
A S E L F - S T U D Y C O U R S E I N F O R T R A N P R O G R A M I N G -
V O L U M E I - TEXTBOOIC

V a l m e r N o r r o d , e t a 1

C o m p u t e r S c i e n c e s C o r p o r a t i o n
E l S e g u n d o , C a l i f o r n i a

A p r i l 1 9 7 0

U.S. DEPARTMENT O F COMMERCE

https://ntrs.nasa.gov/search.jsp?R=19700015982 2019-12-24T15:14:02+00:00Z

NASA CR-1478, Vol. I

A SELF-STUDY COURSE I N FORTRAN PROGRAMING

Volume I - Textbook

By Valmer Norrod, Sheldon B l e c h e r , and Martha Horton

D i s t r i b u t i o n o f t h i s r e p o r t i s prov ided i n t h e i n t e r e s t of
i n f o r m a t i o n exchange. R e s p o n s i b i l i t y f o r t h e c o n t e n t s
r e s i d e s i n t h e a u t h o r o r o r g a n i z a t i o n t h a t p repared i t ,

P r e p a r e d under C o n t r a c t No. NAS 5-9758 by
COMPUTER SCIENCES CORPORATION

E l Segundo, C a l i f .

f o r Langley Research Cente r

IdA"%lONAB AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse foi Federal Seiantif i t and Technicn! !nformatinrr

Springfield, Virginia 22151 - C F S l l price $3.00

Page intentionally left blank

6
2

g
d

bO
V

)
r

.
r

(
V

)

C

M
(

d
V

)
.

d

C

(d
C

u

.
d

C
I

.d

.

;
*

z
8

H
5

a
&

t
I

-
,

$+
M

$
$

5
.

r
(

~
2

a

2
0

I-
,

cd
k

W
r

d
Z

%
W

a
,

 -
"

2
s

 5
"

.

w

5
"

N

%
.

:
t

i

c
v

r
g

O
O

a
,

M
C

.

r
(

+
J

(
d

m

k

E
-

L

o
a

 w
e

r
(

~

c
l

k
g

3
0

"
"
-
2

.r(
i

B

C
I

C
r

n
"

5
%

r
d

e,

-r
(

0

a
t

4
0

4
-

J

V
)

O

Q

k

(d

k

'+

a

5
5

s
 !

%
a

I-,
C

g

z
~

M
C

.

*
F

2
;

C

a)

r
(

k

a,
e

g
3

3
2

.
5

g

.
d

O
d

k
a

,

V
)

U

5 6
k

%
k

U

5
O

c

c
c

a
,

c
,

k

C
.

.r-i

(d

A
k

k
O

v,

d

k

(d

2
g

s
t

4
5

a
o

+

3
0

2

ccc
a,

.r
(

E
a

k
C

V
)

V
)

s

a
,

(
d

k

u

rd
5

Z
3

8
Z

S
P

0

$
?

'
A

"

?=
V

)
L

-5
k

a,
V

)
&

q
s

3

g
5

I-,

V
)

d

I-,

d
W

5

.
3

0

l
n

a
a

n

T
u

g
:

:

T
 k

~
a

,
v

,
r

(
k

e

$
a

,
a

,

I-,
$
s
!
&

V
)
"

a,
;,

2
..

"
d

k

k

.d

d
C

d

C
d

U
l

W
d

X

I-,

P
,

C
W

W
X

a,

.r(
a

0
5

9

0

U

M
*

d

*
P

h

C

k
Q

V
)

&
S

d

V
)

.
r

(
A

M
N

a
,

k
O

d

.r
(

C

bo
0

.P
I

.-
(

k

(d

c

c
7

a
P

 g
.

.
d

o

k
$

M

k

w
k

x
X

e
5

$

5
o

o
a

,
w

a
M

Pii

Page intentionally left blank

t")

:<
:

o
c
'
m

d
a
)
3

U

k

cd
C

a

M
a
,

a
k
a
,

x

r
d
P

k
 B

0

m

3

-
(

d

k
 x

k

a
)

a
,
@
d

c
,

d
c

d

C
3
3

E
x

:
.
I
?

c
 a

U

a,

% .:
5

a
)

co

$ z 2

d
-
4
0

.
d

h

c,
a, .. cd

c
c

4
-

J
U

M

C
 .
d

C

a
d

cd
E

L
!

-
7
3
5
.

o

a
a
)

a
0

>
c
a
 0
.
4

c,
C
J
c
'

a,
0

*
C

k

0.l
O
O
 O
W

.r
(rcc

4
0
k
a
)

u
c

'
a

G

X

C
r
n

k

o
c

-
a
,

o
o

c
>

k

cd
a
)

Q
C
 a

,
94
3

b
O
 ,a

D

3

M
.r

i
cd
0

C

k
>
W

.r
i tJ
3

6

.
a

0
 0
3
 a
)

4
0

>
d

X
O

0

k
C
 k

'
M
o
c
'
a

.
n
 0

w
m
k
m

g
E
o
c
d

a
 c

a
,
a
'
o
a

r
d

c
c

E

d
c

d

P
ic

'
5

.
d

a
)

0

.
a

)
C

k
'
U
C

P
O

a
,
@
k

2
2

.5

c'
d
'
o
a

>

+
J

a,
r
b
L
n
X

H
k
O

+J
3
1
3

.r
(

0
 C

I
W

s

e
a

o

m
a
,
a
,

H
a
,
?

6
 4J

Ln a

Page intentionally left blank

TABLE O F CONTENTS

SECTION

P a r t I

P a r t I1

IT. A
II. B

11. E
TI. F
II. G

P a r t 111

III. C
III. D
IlI. E
111. F

GENERAL

Introduction
Number Systems
Basic Computer Concepts

GLOSSARY

FORTRAN BASICS

F o r t r a n Arithmetic Statements
Data
Mixed Mode Expressions
Ar rays and Subscripted Variables
Data Types
Logical Operations
More on Mixed Mode Expressions

CONTROL STATEMENTS

Introduction
GO TO Statements
Logical Expressions
IF Statements
The DO Statement
Other Control Statements

P A G E

TABLE C?F CONTENTS (Continued)

SECTION --
P a r t EV

N . A
IV.B
IV. C
IV. D
IV. E
IV.F
IV. G
N . H
IV. I
IV, J
W O K
m. L
N. M
IV, N
N , O

P a r t V

BASIC INPUT / OUTPUT

Introduction
Bas ic I/ O Statements
I/ O L i s t
Data Formatt ing
Ew. d Conversion, Output
Ew. d Conversion, Input
Fw . d Output
Fw. d Input
Iw, Input and Output
Editing Specifications
New Record
wH, Output and Input
Repeated Specifications
Input/ Output Statements
Data Statements

SUBPROGRAMS

Statement Functions, Function and Subroutine
Subprogra-ms, COMMON
Subprograms
Function subprograms
Subroutine Subprograms
Available Functions
COMMON
Block Data
EQUIVALENCE Statements

EXTERNAL Statements

PAGE

T A B L E O F CONTENTS (Continued)

SECTION

P a r t VI

VI, A
VI. B
v10 C
VI, D
VE, E
VI. F
VI. G
VI. H
VI, I
VI. J
VI. K
VI. L
VI. M
VI. N
VI. 0
VI. P

Part VII

VII. A
VII. B
VII. C
VII. D
VII. E

INPUT/ OUTPUT EXTENDED

Int roduct ion
Gw. d , Input a n d Output
Lw, Input a n d Output
Sca le F a c t o r s
Group Speci f ica t ions
Aw, Input
Aw, Output
Rw, Input a n d Output
Ow, Input and Output
V a r i a b l e F o r m a t s
ENCODE/ DECODE S t a t e m e n t s
Unformat t ed I/ 0 (binary)
Data F i l e s
NAMELIST S ta tement
P r o g r a m F i l e s
S y s t e m F i l e s

PROGRAMING TECHNIQUES

S t e p s i n P r o b l e m Solving
A c c u r a c y
S impl ic i ty
Debugging
Helpful Hints

P A G E

A SELF-STUDY COURSE IN FORTRAN PROGRAMING

Volume I - Textbook

By Valmer Norrod, Sheldon Blecher, and Martha Horton
Computer Sciences Corporation

Introduction

To serve a s both an introduction to this manual and a s a note of encouragement
to the student, it can be stated with assuraace that anyone who has conquered
the 3 R'S can learn FORTRAN. This, of course, assumes a good self-teach manual
(our obligation) and reasonable effort on the student's part (your obligation).

One of the primary objectives of this introductory section is to familiarize
the student with the philosophy behind this manual and to present basic
computer concepts which a r e qpplied in computer progrdmrning. Much of
the information presented here is not necessary in order to learn how to
use FORTRAN but it will at least serve to place things in proper perspective.

One being exposed to computer programming for the f i rs t time might very
well ask the following questions.

What exactly is a computer?
Row does a computer work?
What is a computer program?
How does a computer use a computer program?
Now does information get in and out of a computer?
What specific steps must be taken in order to get the computer to do something?

I.A.1
(Cont .) The m a t e r i a l covered i n t h e in t roductory n a r t of t h e course at tempts t o

answer t h e s e ques t ions and i n s o doing covers b a s i c background information,
This po r t ion of t h e manual w i l l acquaint t h e new programmer with t h e t o o l s
with h i c h he w i l l be ope ra t ing , Included w i l l be d iscuss ions and exe rc i se s
on what a computer is, how it ope ra t e s , and what it requ i r e s i n order t o
opera te . Exercises and answers a r e contained i n Volume I 1 and w i l l be r e -
f e r r e d t o a t t h e apyropr i a t e p o i n t s i n t h e t e x t . Also, i n o rde r t o famil-
i a r i z e t h e s tudent wi th words and expressions i n common use i n t h e computer
f i e l d , a g lossary of computer terms has been compiled and incorpora ted a s
p a r t of t h i s in t roductory sec t ion .

The philosophy behind t h i s s e l f - t e a c h manual i s t o break FORTRAN down t o
i t s t r u l y bas i c elemen-cs, A t t lmes it may seem t h a t we a r e "begging t h e
point"', Be p a t i e n t with u s - a t worst we a r e g u i l t y of over-explanat ion.
We have chosen over-explanat ion a s a method by which we can avoid t h e
more se r ious p i t f a i l of i n s u f f i c i e n t exyrlanation.

In o r d e r t o i n su re t h a t a po in t i s c l e a r l y made, a ques t ion o r a s e r i e s of
ques t ions fol iows t h e presentxa ton of each new f a c L The ques t ions have
been arranged on t h e page with t h e answers i n t h e margin so t h a t you can
cover them while reading t h e ques t ions . Tf you answer a ques t ion i n c o r r e c t l y
re read t h e previous s tatement u n t i l you understand t h e answer t o t h e ques t ion .

Great pa ins have been taken i n order t o develop an o rde r ly accumulation o f
f a c t s i n small s t e p s , To f u l l y r e a l i z e t h e advantages of t h i s manual - t a k e
t h e small s t e p s - don ' t jump around.

I. B Number Systems

I. B. 1 Basic to the understanding of a computer system is the understanding of
number systems. All of us are familiar with the decimal number system
although many of us, due to the way we were taught, have no idea of what
another number system means.

I. B. 2 What makes the decimal number system a decimal system is simply the
fact that 10 distinct digit characters are defined within the system (0, 1,
2, 3 , 4, 5 , 6, 7, 8, 9). The decimal number system can also be referred
to as a number system to the base 10 since the number of digit characters
defined in a number system establishes the of the number system,

Tke decimal number system is a number system to the base

I . B. 3 As an aside, it should be realized that there is nothing truly logical
I
w about using the decimal number system. It simply evolved because
I we have 10 fingers (10 distinct digit characters) which proved con-

venient as a counting device (as many of us realize).

I.B.4 A number system which contains 8 distinct digit characters (0, 1, 2,
3 , 4, 5, 6 , 7) is referred to as an octal number system or a number
system to the base 8. Similarly a number system containing 2 digit
characters (0, 1) is referred to as a binary number system or a number
system to the base 2.

A binary number system contains digit characters.
An octal number system contains digit characters.

Answer: 10

Answer: 2
Answer: 8

I.B. 5
(Cont.)

The point of this whole illustration is to show the significance of digit position
in a number. Although each person in the illustration has only 10 digits, the
count is only limited by the number of people or analogously by the number of
positions in a number - not by the number of digits available to the position.

Let's ca r ry the analogy to a decimal number 285383. We assign positions as
follows.

position4 6 5 4 3 2 1

0
position 1 contains 3 which represents 3 ones = 3 x 10 .

1
position 2 contains 8 which represents 8 tens = 8 x 10 .

2
position 3 contains 3 which represents 3 hundreds = 3 x 10 .

3
p ~ s i t i o n 4 contains 5 which represents 5 thousands = 5 x 10 .

4
position 5 contains 8 which represents 8 ten thousands = 8 x 10 .

5
position 6 contains 2 which represents 2 hundred thousands = 2 x 10 .
The total number is the sum of all these:

Fill the following box with the decimal number 95432.

Answer:

I.B.6
(Cont.)

Getting back to our eight-fingered people, the addition of a third person
enables us to keep track of how many times 8 eights a r e counted. Eacb
digit raised by this third person therefore represents 8 eights, 9x3, 8 2

or 64.

Once again a pattern arises. Equating the people to digit positions we find
that in the octal number system, digits in position 1 represent the number

0 1
of ones (8), digits in position 2 represent the numbgr of eights (8), digits
in position 3 represent the number of eight e ' hts (8), digits in position 4 F represent the number of eight eight eights (8) and so on.

Let's examine the octal number 35276.

We assign positions a s follows,

position- 5 4 3 2 1

0
position 1 contains 6 which represents 6 ones = 6 x 8 .

J.
position 2 contains 7 which represents 7 eights = 7 x 8

2
position 3 contains 2 which represents 2 eight eights = 2 x 8 .

3
position 4 contains 5 which represents 5 eight eight eights = 5 x 8 .

4 position 5 contains 3 which represents 3 eight eight eight eights = 3 x 8 .
The total number i s representable a s the sum.

0 1 2 3 4
6 x 8 + 7 x 8 + 2 x 8 + 5 x 8 + 3 x 8 .

T o evaluate the decimal equivalent to the octal number 35276 all we

'T3
a,

a

C
,

8
"a,

k

Q
,
a

I
h

L

45 is a number to the base
8

45 contains
8

8's and 1's.

Since 45 contains
8

8's and - 1 ' s , it is equivalent
to the decimal number .

The base of a number system can now be seen to have significance not
only as the number of digits contained in the number system but also
with respect to digit position.

Expressing a whole number a s a sum of products, each product is
composed of the digit multiplied by the base of the number system
raised to a power which is the number of positions from the right-
most digit.

Restating this rule in t e rms of a formula we find that:

Position from right-most digit Each Product = Digit x Base

Take the octal number 456. Expressing this number a s a sum of
products we know immediately that since the number contains 3
digits it will be represented by the sum of 3 products. Digit 4 is
two positions from the right-most digit 6 s o that applying the
formula we find the product to be:

4 x 82 .- Position from right-most digit

Answer: 8

Answer: 4, 5

Answer: 4, 5, 37

T t
Digit Base

-+ 6) =r
a
 0 $

4

a

m

.r:

w

0

E
F:
.A

5

a,
m

m

B

)
k

II,
8

I

M

k

2 .r
(

Q
,

s
b

.z
K

a

(rJ
.r:

m
 .-

-10-

I . 33.7 Express the following numbers as sums of products.
(C ont.)

3 7
8

A 11 this discussion about number systems has been leading up to the
fact that with the use of computers we are faced with the problem
of dealing with numbers to base systems other than ten. For this
reason it is important to have some idea of what is meant by number
systems.

The number systems often used when working with computers are
decimal, octal, and binary.

The binary number system is the number system under which
computers operate.

The octal number system is a convenient system by which binary
numbers can be represented.

1
Answer: 3 x 8 + 7 x 8 0

2
Answer: 5 x 8 + 0 x 8

1

+ 6 x 8
0

1
Answer: 9 x 10 + 5 x 10 0

2
Answer: 9 x 10 + 0 x 10

1

+ox10 0

The decimal number system is, of course, the system of the user.

I.B. 8 The use of numbers in each of these systems necessarily requires
(Cant.) an ability to convert from one number system to another and also to

perform the basic arithmetic operations of addition and subtraction
in each of the systems.

Computers operate under which number system? Answer: Binary

The octal number system is a convenient system by which Answer: binary
numbers can be represented.

Octal to Binary Conversion

Due to characteristics of the binary and octal number systems,
octal numbers are easily converted to binary numbers and vice
versa. This is due to the fact that when binary digits a re taken
3 at a time, there is a one to one correspondence to octal digits
as indicated in the following table.

Octal digit Binary digits

Binary to Octal Conversion

The conversion from binary to octal is just the converse of the
octal to binary conversion. The digits of the binary number a r e
grouped in sets of 3 from the rigM and appropriate octal digits a r e
substituted. Zeros a r e placed preceding the binary number if
necessary to make the bits an even multiple of three.

Converting the binary number 1 1 O l l l O O l l to octal we f i rs t group
the digits in sets of three from the right a s follows.

In this example two leading zeros were added to provide an even
multiple of three.

Next the appropriate octal digits a r e substituted.

binary 0011011 1001%
--P--.=-.--

octal 1 5 6 3

The binary number B l O P P l O O l I i s , therefore, equivalent to the
octal number 1563.

The binary number 110000011 is converted to octal as follows.

binary f l O O O O O I 1 ---.-'-
octal 6 0 3

The binary number 110000011 is equivalent to the octal number 603.

m

m

.A

k

a

P

E !2 4

cd
i-

,
0

0

Q

5

w

0

% .A k

Q
J

5
 E 0

&

.
d

%

m

0

a

a

k

8

2 w

I. B. 11 The fourth position from the right of the octal number is 2.
(Cont,)

Step 5

The 2 remaining in the quotient of step 5 is the number of times
the decimal number 9543 cycles through 84.

The fifth position from the right of the octal number is 2.

From steps 1-5 the decimal number 9543 is equivalent to the
octal number 22507.

Let's go through steps 1-5 once more in a more convenient manner.
We'll perform continuous divisions by 8 and indicate each remainder
to the side as follows.

Remember that each remainder represents a converted octal digit,
the f irst remainder being the right-most digit, the second the next
right-most and so on.

We'll again convert the decimal number 9543 to octal.

remainder
division 1 8 \,9543

division 2 8 \1192 7 (right-most octal digit)

division3 8 w 0 (2nd octal digit from right)

division 4 8 'a 5 (3rd octal digit from right)

division 5 8 \ 2 2 (4th octal digit from right)

2 (5th octal digit from right)

The decimal number 9543 is , therefore, equivalent to the octal number 22507,

co

a,
a,
a

A

e:

(D

n

a,

-18-

I, B. 1 2 Octal to Decimal Conversion

Conversion from octal to decimal can be accomplished by either
representing the octal number as a sum of products and simply
evaluating the summation or more rapidly through a mechanical
procedure of multiplications and additions.

The f i rs t way can be illustrated a s follows, Convert the octal
number 2357 to decimal.

The octal number can be represented by a summation which when
evaluated yields its decimal equivalent.

The octal number 2357 i s , therefore, equivalent to the decimal
number 1263.

The second method of converting from octal to decimal i s arrived
a t by factoring the equation which represents an octal number a s
a summation of products.

To be more specific, an octal number n n n n where n n
3 2 1 0 ' 0' 1'

n and n a r e octal digits, can be represented a s a sum of products.
2' 3

I. B. 12
(6 ont .)

In order to illustrate this procedure, let's assume we wish to convert
the octal number 22507 to decimal. The procedure is as follows.

Operation Illustration

4. Add the next octal digit to this 5 4 -
product 149

1. Multiply the left-most octal 2 2 5 0 7
digit by 8

2. Add the next octal digit to this -

5. Multiply this by 8

product 18
3. Multiply this sum by 8 8 -

144

6. Add the next octal digit

8

\
;
i
!

7. Multiply by 8

8. Add the next octal digit

The octal number 22507 is, therefore, equivalent to the decimal
number 9543.

Let's convert the octal number 543 to decimal.

1. Multiply the first digit
by 8

2. Add the second digit
3. Muleply by 8

4. Add the third digit -
355

The octal number 543 is equivalent to the decimal number 355.

Convert the following octal numbers to decimal.

a.) 1z8

b.) 3108

c.) 53748

Answer:
a.) 10

b.) 208

c.) 2812

I. B. 13 The rules for addition and subtraction in number systems, other than
decimaI, a r e essentially the same as those for decimal. The primary
difficulty encountered in performing additions and subtractions in other
number systems involves overcoming decimal number habits. We're
all so accustomed to adding and subtracting in decimal that we are, in
a way, faced with a psychological block when we have to perform these
operations in any other number system. Of course prolonged exposure
to octal addition and subtraction will eventually lead to a high degree
of proaciency. It would become as mechanical or as natural as perform-
ing these owrations in decha l . However, since our use of octal addition
and subtraction will be e&emely limikd, we'll discuss octal operations in
terms of decimal. In other words, although we'll add and subtract in
octal, we'll think in decimal.

I. B. 14 Octal Addition

In performing additions in octal, the same procedure is followed as in
decimal with the following exception, When an octal digit is decimally
added to an octal digit, the sum must be converted to octal if this decimal
sum is larger than or equal to 8. The conversion is given in the following
table.

decimal sum octal sum

I. B. 14 This conversion can be easily remembered by not- that the octal
(Con(;.) numbers are two more the numbers.

Note also that the largest summation which can be ~ B r f r m e d in octal
on a digit basis is 7 plus 7.

To demonstrate octal addition, let's & 7338

1. ~ d d 7 to 3 decimally - -
7 + 3 = 1 0

2. Since 10 is greater
10 + 2 = 12

578 I

-
3. Write down 2, carry 1 I 2

4. Add 7, 5 and the 1 carried over
decimally

7 + 5 + 1 = 1 3
73$
578 1

5. Since 13 is greater than 7, add 2 -
13+ 2 = 15 1528

The octal sum of 7Sg and is 152&

0
3

co
f-4

(D

0
3

M

m

TI'
0

3
C

-

0

M
C

Q
L

o
o

a

"
"

N
"

.
.

.-

k
k

k
k

a

,
a

,
a

,
a

,

3
z

g
g

2

G
F

:
F

:

C
<

C
C

* I
"

k

3
,

M

k

I
.

2

0

-
'

-

"
T

I
'

I1
g

2 LC
-

$
$

f-4

0

4
-

7

Octal Subtraction

The rules for octal subtraction a re essentially the same as those in
decimal. Again, rather than actually perform the operations in
octal, we'll set up procedures by which the actual arithmetic operations
a r e carried out in decimal, but yielding octal results.

The primary rule to remember when subtracting in octal is that when
a digit subtrahend cannot be subtracted from a digit minuend, 8 is
added to digit minuend and 1 is taken away from the next digit minuend.

For example, if we wish to subtract 72 - 37 octally, our first attempt
8

is to subtract 7 from 2. Since this can't be tone, we add 8 to 2 and take
1 from the 7 in the minuend next to the 2 and subtract as follows.

The difference between 72 and 37 in octal is, therefore, 33
8 8 8'

Let's t ry another example.

Subtract 157428 - 555 in octal.
8

In the first digit position 5 cannot be subtracted from 2. Add 8 to 2
and take 1 from the 4 in the next digit position. Then subtract decimally.

In the second digit position the minuend is now 3, but since the subtrahend
is 5, it cannot be subtracted. Add 8 to 3 and subtract 1 from the 7 in
the next minuend digit position. Then we subtract decimally.

I. B. 15
(C ont.)

11
6$10

The res t is a straightforward subtraction. 1 5 7'42
555

15165

The octal difference between 15742 and 555 is 15165 8 8 8'

Perform the following subtractions in octal.

The rules for binary addition and subtraction a r e essentially the
same as for octal and decimal. In some respects it's even easier
since only two digit characters a r e ever involved.

Binary Addition

When adding binary numbers we're always adding either 0's or 1's
to each other in each bit position. The following table lists all the
summations which can occur by bit position when adding two binary
numbers.

Both bits can be 0 O + O = O no ca r ry

One bit can be 0, the other 1 1 + 0 = 1 no ca r ry

Both bits can be 1 l + l = O 1 carry

Both bits can be 1 plus a carry 1 + 1 + 1 = 1 1 carry

Answer: a.) 3611
8

Answer: b.) 16
8

Answer: c.) 6560
8

Answer: d.) 66678

I. B. 16 Assume we wish to add the number 101110 to 011100 in binary.
(Cont.)'

In bit position 1 101110
0 + 0 = 0, no ca r ry 011100

0

In bit position 2
1 + O =1, n o c a r r y

In bit position 3
1 + 1 =0, 1 car ry

In bit position 4
1 + 1 + l = l , l c a r r y

T car ry

In bit position 5
O + 1 + 1 = 0 , 1 c a r r y

T
car ry

In last bit position
1 + 0 + 1 = 0, 1 car ry

t
ca r ry

The sum of 101110 and 011100 in binary i s , therefore, 1001010,

I. B. 16 Perform the following additions in binary.
(6 ont.)

a. 1 110011 + 1

b.) 110100 + 111111

c.) 111 + 111
d. 1 10001 + 11001

Binary Subtractions

Although subtraction in binary can be carried out in essentially the
same manner a s in decimal, that is, subtracting digit by digit, this
often becomes unwieldy. The reason for this is that since in binary
we are dealing with only the two digit characters 0 and 1, we must
frequently in subtraction borrow through a large number of digit
positions containing zero in the minuend. This can cause some
difficulty and confusion.

As an alternate approach, the difference between two binary numbers
can be found by complementing the subtrahend, adding this to the
minuend, and then adding any resulting carry. This is particularly
suitable to binary numbers since the complement of a binary number
is found by simply replacing 0's with 1's and 1's with 0's.

Answer: a.) 110100

Answer: b.) 1110011

Answer: c ,) 1110

Answer: d.) 101010

I. B. 17 This method of binary subtraction is illustrated in the following examples,
(C ont.)

a.) Subtract in binary 110001 - 101111.

The minuend is 110001.
The subtrahend is 101111.

Complement the subtrahend
Add the minuend
Carry 1
Add the ca r ry
Difference

The difference between 110001 and 101111 is, therefore, 10 in binary.

b.) Subtract 100101001 from 111100000 in binary.

The minuend is 111100000.
The subtrahend is 100101001.

Complement the subtrahend
Add the minuend
Carry 1
Add the ca r ry
Difference

The binary difference between 111100000 and 100101001 is, therefore, 10110111.

I. B. 17 c.) Subtract 101 from 111010000 in binary.
(Cont.)

The minuend is 111010000.
The subtrahend is 000000101.

Complement the subtrahend 111111010
Add the minuend ,111010000
Carry 1 111001010
Add the carry 1
Difference 111001011

The difference between 111010000 and 101 is, therefore, 111001011.

Perform the following subtractions in binary.

Answer: a.) lOlOOll10

Answer: b,) 001111

Answer: c .) 111

Answer: d.) 1011

Fractional Conversions

Conversion to Decimal

Before concluding our discussion of number systems, some
brief mention will be made of fractional numbers.

We a r e all familiar with fractional numbers in the decimal
number system and recognize that digits to the right of the
decimal point define the fractional portion of the number.
When we represent a decimal number as a sum of products,
we find that the products obtained from digits to the right of
the decimal point a r e a logical extension of the way products
a r e obtained from digits to the left of the decimal point. This
can be illustrated by representing the decimal number 29.35
as a sum of products.

From this example, it can be seen that products a r e formed
with digits to the right of the decimal point by multiplying
the digit by 10 raised to the negative power of its position
to the right of the decimal point.

Analogously, fractional numbers in other number systems
a r e represented by sums of products in the same way.

In the octal number system, products a r e formed with
digits to the right of the octal point by multiplying the digit
by 8 raised to the negative power of its position from the
octal point.

I. B. 18 The octal number 43.24 is represented by the following sum
(6 ont .) of products.

Note that the conversion of the octal number 43.24 to decimal
is simply the evaluation of the sum of products as follows:

Binary digits to the right of the binary points a r e handled in
a similar manner. The binary number 101.11 is represented
by the following sum of products.

Represent the following numbers a s sums of products.

a ,) . 9510

b.) 83.210

c.) .538

d.) .02
8

e.) 7.18

f .) 11"12

Answer:

- 1 -2
8.) 9 x 10 + 5 x fO

1 0
b.) 8 x 1 0 + 3 x 1 0 +2x10- '

- 1
c.) 5 x 8 + 3 ~ 8 - ~

d.) 0 x 8 - ' + 2 x 8 -2
0 - 1

e ,) 7 x 8 + l x 8
1

f.) 1 x 2 + l x 2 ° + 1 x 2 - '

g.) 0 x 2 - l + i x 2-2

I, B. IS Decimal to Octal
(C ont.)

Fractional decimal numbers a r e converted to octal by successive
multiplications by 8. The decimal fraction is multiplied by 8 and
the integer portion becomes the f i rs t octal digit. The fractional
portion of the product is then multiplied by 8 and the integer result
becomes the second octal digit. This is continued as far a s desired.
The following example illustrates this process.

Convert the decimal fraction ,596 to octal.

Step 1 Multiply by 8,
4 is the f i rs t converted octal
digit after the octal point,

Step 2 Multiply the fractional. portion by 8.
6 is the second octal digit.

Step 3 Multiply the fractional portion by 8.
1 is the third octal digit.

Step 4 Multiply the fractional portion by 8.
I is the fourth octal digit.

The result s o far i s . 59610 = . 46118

By continuing this process the converted octal number can be carried
out to a s many places as desired.

Convert the following decimal. fractions to octal.

b.) . 312510

Answer: a .)

b.) .248

e.) .048

Basic Computer Concepts

Although the base of a number system can be any number equal to
2 or more, decimal, octal, and binary number systems are of
particular importance when related to computers.

The decimal number system is of importance simply because that's
the system we're all used to and expect to use in basic communica-
tion with the computer.

The binary number system is the number system of a computer.

The octal number system is a convenient system in which to
represent numbers in the binary number system.

The three number systems of particular importance in relation
to computers a re 7 , and Answer: decimal

octal
binary

I . C . 2 \Vhy is the binary number system the number system of computers?

The binary number system as we now know contains only 2 digits.
This is significant!

How can the 2 digits 0 and 1 be represented in the binary number
system ?

Of course we can just write i t , but physically how can we represent
it ?

Bow about up and down--up is 1 and down is 0.

Bow about wet and dry--wet is I. and dry is 0.

White and black, open and closed, right and left, full and empty,
on and off--all of these conditions can be used to represent a
0 and 1 in the binary number system.

A computer uses an on and off condition to represent the binary
digits 0 end 1. 1 i s an on condition and 0 is an off condition.

A binary digit in a computer is called a bit--a contraction of the
words - binary and digit. -
The binary digit 0 in a computer i s represented by an
condition.

The binary digit 1 in a computer is represented by an
condition.

A bit is a

Answer: off

Answer: on

Answer: binary digit

I.C.3 Specifically, a bit position in a computer is considered in an
"on1' state when magnetized and in an "off" state when non-
magnetized.

As you recall, a number is defined not only by the number of
digits contained in its number system, but also by digit position.

Although we've explained how a computer recognizes the binary
digits 0 and 1, we have not as yet discussed bit positions--an
essential requirement for representing a number.

In a computer a certain number of bit positions are assigned to
a "computer word". The number of bit positions contained in a
computer word vary with computers. The CDC 6600 has a com-
puter word made up of 60 bit positions--a word in the CDC 3200
computer contains 24 hit positions--the UNIVAC 1108 and IBM
7094 have computer words containing 36 bit positions.

The number of bit positions contained in a computer word estab-
lishes the magnitude of the number that can be represented by
that computer word. The more bit positions assigned to a com-
puter word, the larger the number that can be represented.

A computer word is composed of a fixed number of Answer: bits or bit
positions

I. C. 5 Computer words are the basic structure of any digital computer.
Computer words can be recognized in one of two ways by a com-
puter, as instructions or as numbers.

The instruction repertoire of a computer is a function of computer
design. Every digital computer has its own set of basic instructions
defined in terms of a fixed bit configuration within a computer word.

Computer words a re recognized by computers as either
or

I.C.6 Before we discuss in any more detail the role played by computer
words, let's back away for a moment and discuss, in general, how
a computer operates.

An analogy can be made between computers and the human brain.
The term "electronic brain" is commonly applied to computers and
justifiably so. A computer is composed of memory cells which can
retain or provide information through a suitable arrangement of
instructions. This arrangement of instructions is called a computer
program.

This i s not dissimilar to the brain, It too, in a sense, has available
memory cells which through the learning process become programmed
to perform various functions.

Answer: instructions,
numbers

The computer, like the brain, requires input data to operate on. Input
dataare transmitted to the brain through 5 senses which are collected
by physical devices hooked on to the body--eyes, ears, nose, mouth, etc.

I. C. 6 So too with a computer. Physical devices such as optical scanners,
(C ont.) punched cards, paper tape, magnetic tape, magnetic disks, etc.

are all available for transmitting information to the computer.
These a re called input devices--devices transmitting information
to the computer.

Output devices used by the brain include speech, writing, body
movement, facial expressions, etc. Output devices available to
computers include printers, plotters, magnetic tapes, oscilloscopes,
typewriters, etc .
So, in order for a computer to work i t must have:

1. input capability
2. a resident computer program
3. output capability

Let's follow through the steps taken when a problem is posed for
computer solution.

To make these steps more meaningful we'll assume an actual problem
and illustrate the steps taken in terms of this problem.

Assume the following problem :

2
Given a quadratic equation 0 = c + 12x - 15x , solve for x for all values of
lfcfl from 1 to 100 in steps of 1.

I. C. 6 Step 1
(C ont .)

Surprisingly enough, the f i rs t step is to solve the problem. It must
be remembered that computers do not solve problems, programs do!
All computers do is to provide a means by which instructions can be
carried out rapidly, repetitively, and consistently. The programmer,
knowing the instructions available to a computer, must decide how a
problem is to be solved. A single problem can be solved in many ways
on the same computer. The method of solution is left to the discretion
of the programmer.

Problems a r e solved by Answer: computer programs

Computer programs provide instructions to be carried out by Answer: computers

The solution to a quadratic equation, a s we recall from high school
algebra is:

Substituting values from our sample quadratic equation, we find the
solution to be:

This i s the solution to the problem and it is this equation that we will
program. It is very important to realize that solutions a r e programmed,
not problems.

I. C.6 Step 2
(Cont.)

This step establishes the logic to be employed in solving the problem.
It is at this point that a flow chart i s drawn to illustrate the method of
solution. Flow charts will be discussed in more detail further on in
the course.

The solution to our sample problem could be flowcharted as follows.
It should be noted here that this flow chart does not conform to any
standard convention, but is presented for simple illustrative purposes.

I Print c , xl, x 2 1
I

I .C .6 If you examine this flow chart, you'll notice that in order to solve
(C ont .) our problem we must

1.) perform the calculation
2.) printout the results
3.) repeat the calculation and printout for a total

of 100 values of c.

These are, in general terms, the functions to be performed by
the program. How these functions a re specifically performed
depends on the instruction repertoire of the computer o r the
computer language being used.

For now let's accept the fact that somehow instructions can be
written to perform all the functions designated in the flow chart
and let1 s see what happens next.

step 3

Now that we know how we are going to solve our problem, we are
prepared to write our program on coding sheets. Programs are
written on coding sheets for convenience since they indicate how our
written instructions a re to be punched onto cards.

Coding sheets a r e designated to simulate computer cards. On a
coding sheet each line is divided into 80 columns corresponding
to the 80 columns contained on a card. What is written on one line
of a coding sheet will be punched in the designated columns, on one
computer card.

How do we know what columns to wri te our instructions i n ?

This is str ict ly a function of the rules of the language in which
we're writing. In FORTRAN very specific ru les a r e defined
with respect to the columns in which information can be punched.
This will be discussed la te r on in the course.

Computer ca rds contain columns.

A line on a coding sheet is divided into columns .
Information written on 3 l.ines of a coding sheet will be punched
onto how many computer cards ?

Back to our sample problem! We're ready to wri te the program.
Let's take the plunge and write the program in FORTRAN--a
preview of things to come. In our program, the symbol A is used
to represent c in the formula.

Answer: 80

Answer: 80

Answer: 3

I. C .'6 These 9 lines of FORTRAN instructions constitute an llhonest to
(Cant.) goodness" FORTRAN program. It follows quite faithfully the logic

we've outlined in our flow chart.

Don't panic now! Recognize this for what it is--a preliminary
exposure to a FORTRAN program. It is meant to give you some
idea of what a FORTRAN program looks like.

Let's examine this program line by line and get a general idea of
what these instructions mean. Whatever you get out of this pre-
liminary exercise will prove worthwhile as an aid.in later reading.

Line 1 of our program, A = 1, instructs the computer to assign a
value of 1 to the symbol A .

Line 2 performs the calculation and assigns the result, the first
root of the equation, to the symbol XI.

Line 3 performs the calculation and assigns the result, the second
root of the equation, to the symbol X2.

Line 4 prints out A , X1, and X2 on a printer attached to the computer.
The results a re printed out on the page according to a format defined
on line 8. Line 8 simply tells the computer how to physically print out
results on the output page.

Line 5 adds 1 to the value of A. A will now be 1 larger than it was
before.

Line 6 tests to see if A is less than or equal to 100. If it i s , it tells the
computer to go back to line 2.and repeat lines 2, 3, 4, and 5 until the
value of A is greater than 100. When A is greater than 100, the computer
is instructed to go to line 7.

Line 7 tells the computer to stop executing instructions for this
program .

Line 8 provides format instructions for the print instruction on
line 4.

Line 9 contains an instruction, END, which indicates to the
computer that this is the last card of the program.

After the program has been written on a coding sheet, the next
step is to have the program punched onto computer cards, our
means of communication with the computer.

Step 4

The computer cards a re now placed in the card hopper of the card
reader attached to the computer. Some buttons a re pressed on the
computer console and each card is sequentially read by the card reader,
information from each card being transmitted by the card reader to the
computer which in turn stores the information into appropriate memory
locations.

After all of the program has been read into the computer, the computer
i s instructed to execute the instructions of the program which now resides
in the computer. As a result of the execution of the program, answers a re
output by the computer on the printer.

I . C . 6 Summarizing all of this we find that in order to solve a problem on
(Cont.) a computer, four basic steps a r e required. They are:

Step 1 The solving of the problem

Step 2 The flowcharting of the solution

Step 3 The writing of the program on coding sheets and the
punching of the program instructions onto computer
cards.

Step 4 The input of information contained on the cards to the
computer and the execution of the program.

A problem must be before it can be programmed.

A should precede the writing of a program.

A program is written on

From coding sheets instructions a re onto computer
cards.

Computer cards a re read and transmitted to a computer by
a

Before a program can be executed, the cards containing the
program must be

Answer: solved

Answer: flow chart

Answer: coding sheets

Answer: punched

Answer: card reader

Answer: read into the
computer.

I.C. 8

The address of a computer word is the location of the computer word
in memory. All computer words have an address in computer memory.

Computer instructions a re contained in computer words in successive
addresses and are normally executed sequentially,, calling for data, as
necessary by address, from other areas of memory.

The location of a computer word in memory is called the
of the computer word.

As it turns out, machine language programming can prove quite tedious.
This has led to the generation of program processors which convert
programs written in one language to machine language programs.

One type of program processor is called a compiler. FORTRAN
compilers fit into this category.

A program written in FORTRAN is called a source program. It is on
this source program that the FORTRAN compiler operates in order
to produce a machine language program called the object program.

Before a FORTRAN program can be executed, it must be converted
to a machine language program by the FORTRAN

A FORTRAN program is called a program.

The machine language program generated by the FORTRAN compiler

Answer: address

Answer: compiler

Answer: source

is called the program. Answer: object

Assuming that cards containing a FORTRAN source program
followed by appropriate data a re prepared for input to the computer,
the following steps a re entered into; (Note: automatically, as far
as the programmer is concerned).

1.) The FORTRAN compiler is read into memory.

2.) The cards containing the FORTRAN source program
a re read into memory and converted to a machine
language object program by the FORTRAN compiler.

3.) The machine language object program is then
executed.

The FORTRAN compiler performs quite a feat for the programmer
when one considers the amount of bookkeeping, writing, and complexity
normally found in machine language programming .
It should be added here that in addition to relieving the programmer of
machine language programming, the compiler also provides a large
store of diagnostic messages for the programmer to help him find
program errors , commonly called "bugs". The act of finding and
correcting e r rors in a program is called "debugging a programTf.

Communication with the computer on a computer word basis is
accomplished by using octal numbers. That i s , if one desires to
find out what i s contained in a specific computer word or if one
wants a computer word to contain a specific binary number, octal
numbers a r e used,

Octal numbers a r e used because they a r e equivalent to binary
numbers, each octal digit representing three binary digits. Twenty
octal digits a r e required to represent a 60-bit CDC 6600 computer
word.

For illustrative purposes, let's assume we're working with a 12-bit
computer word. This 12-bit word requires 4 octal digits to represent
it; again, each octal digit covering 3 bits,

Let's represent the binary number 111011001010 in octal. This is done
by taking the bits in sets of three and substituting the appropriate octal
digit for each se t as follows:

binary number 111 011 001 010
c , Y - . - v - - -

octal number 7 3 1 2

The octal number 7312, therefore, represents the binary number
111011001010.

Trying i t the other way we find that the octal number 2176 represents
the binary number 01 0001111110, This is obtained a s follows:

octal number 2 1 7 6
A -

binary number 010 001 111 110

Write the following binary numbers in octal.

101001

llOOOlOOO

lOOOOl111OlO

Write the following octal numbers in binary

Answer: 51

Answer: 610

Answer: 4172

Answer: 100010

Answer: 111011000

Answer: 111111111111

Character information, such as letters, symbols, and numbers, i s
recognized by computers in a special way. It should be realized that
the use of character information is extremely important. ?Jot only is
a computer called on to perform calculations, but also it is required
to process character information in order to provide messages, to
label information, to identify items, etc.

The way a computer is designed to recognize characters is by means
of a 6-bit code. The CDC 6600 defines its 6-bit coding of characters
by a console display code. Some other computers call their character
coding BCD which stands for binary coded decimal. This character
coding is not standard so that a 6-bit code which represents a character
on one computer i s not necessarily the code for the same character on
another computer.

Let's cite an example. A CDC 6600 oomputer word containing the word
"TABLE" in console display code would contain the following.

(octal)

These 20 octal digits represent the 60 bits contained in a CDC 6600
computer word.

I
cn
rP
I I. 6.11 A table is provided at the end of the CDC FORTRAN Reference Manual

(C ont.) which lists the console display codes and the characters to which they
a r e equivalent. From this table the following was obtained.

Character Console Display Code

blank 55
T 24
A 01
B 02
L 14
E 05

Looking at the computer word containing the word "TABLEv1 we find
that the first 6 bits are 55 (binary 1011 01) which is a blank in console

8
display code. This i s followed by four more blanks. After the five
blanks comes the letter "T", in console display code a 24 (binary

8
010100),followed by an "A", in console display code a 01 (binary 000001),
then a "B", I1L", and finally "E". 8

I. C. 11 Write the following words in console display code for the CDC 6600 using
(C ont .) the table of codes provided. Use leading blanks to fill up the 60-bit word.

Console Display Code

01
02
0 3
04
0 5
06
07
10
11
5 5

Character

A
B
c
D
E
F
G
H
I

blank

ACHE

CHIEF

BAGGAGE

Answer: 55555555555501031005

Answer: 55555555550310110506

Answer: 55555502010707010705

C
,

0

. ..
cd

m

a,
2 5

2 .rl
a,

2
5

d

P

0

C
,

cd
0

m

.e4

k

m

h
5

d

 a,
$22

k

'-8 :g
m
~

8 .$
.z :so

3 i3
E

'F

6
cd

&
-a

"

E

P,:
7

s

Q
)
c
b

o
a
,

Z
k

Z

m

$
2

Q'

!$u
9

g
 ,,

".. .zg
3

8

a
,
*

G

2
E

2 2

S
d

W

0

J
.
2
2

O
k

g

d

g -
0

s
3

%

cd *

3
3

.F?

0

a
m

Z

3

g
b

tig

3
$

k
$

m

P

-'

3
.

2

2

P-cs
f

3
k

8
3

.*
.d

$
bD

0

.r
(

G

3
m

m

a,
a,

M

0

cd
0

k

a

%
_

I

9
cd

d

Fc
C

,

0

F:
3

a

Q
)

0

a

m

0

cd
-

G

0

.r
l

k

+
-'

63
8

5
0

.b
,
o

b
m

8

E
8

a
 a

5
c

d
g

+

P
-'
7

GLOSSARY

Boolean

Buffer Storage

Bug

Byte

Calling Sequence

Card

Card Punch

Card Reader

Card-To-Tape

C entr a1
Processing
Unit

Chain

Checkout

Checksum

Related to the logical arithmetic developed by George Boole.

A device which temporarily stores information during a transfer of information.

An error in a program.

A term indicating a fixed number of consecutive binary digits,

The set of instructions used to link a subroutine with a main routine.

A machine processable information storage medium of special quality paper stock.

A device to record information in cards by punching holes in the cards to represent le&ers,
digits, and special characters.

A device which senses and translates into internal form the holes in punched cards.

Refers to the transfer of information from punched cards to magnetic tape.

That component of a computing system which contains the arithmetic, logical, and control
circuits of the basic system.

A series of items linked together.

The application of diagnostic or testing procedures to produce a properly working program.

A summation of digits or bits used primarily for checking purposes.

Compiler

Complex Number

Console Display
Code

Control Card

Core Storage

I
Cn
OD Data Processing
I

Data Reduction

Debug

Deck

Diagnosis

Digitize

Disk Storage

Display Unit

Double Precision

Double Punch

A program processor which translates from a s,ynthetic language such as FORTRAN to machine
language.

A number consisting of a real and an imaginary part.

(See section I. C. 11)

A control card provides information to the monitor o r compiler,

A form of high speed storage using magnetic cores.

Manipulating data to achieve desired results.

The process of transforming raw data to a form more suitable for analysis, This frequently
requires smoothing, adjusting, scaling, and ordering of the raw data.

Same as checkout.

A set or pack of cards.

The process of locating and explaining er rors in a computer program.

To convert from analog to digital form.

A storage device which uses magnetic recordings on flat rotating disks.

A device which provides visual representation of data.

Pertains to the quantity containing M c e the number of digits normally carried.

A term which refers to more than one pmch in any one card column.

GLOSSARY

Downtime

EDP

End of File Mark

File

File Protect
Ring

Fixed Point
Number

Flag

Floatkng Point
Number

Flow Chart

Format

FORTRAN

Hardware

Header Record

The elapsed time occurr ing due t o machine f a i l u r e .

T0prin.t out t h e contents of p a r t o r a l l of some s to raqe medium.

Abbreviation for Electronic Data Processing.

A one character indicator on tape designating an end of file.

A systematic collection of inkrmation often consisting of a number of records.

A ring which when placed on a tape reel enables the tape to be written on. With this ring ofC,
the tape can be read, but not written on.

A fixed point number in FORTRAN refers to an integer.

A symbol used to provide a signal or indication of some condition (e. g., good, bad, or
westionable data).

A number which is represented by the digits of the number plus an indicator denoting the location
of the decimal point.

A graphic representation of a problem in terms of data flow, procedures, methods, etc.

A predetermined arrangement of characters, fields, lines, punctuation, page numbers, etc.

A contraction of the words "formula translator". This algebraic type language is widely
used and can be compiled on many different computers.

The mechanical, magnetic, and electronic components of a computer.

A record containing identifying or explanatory information for a group of records which follow.

GLOSSARY

Hollerith Code

Initialize

Input

Input-Output

Iteration

Left Adjusted

I
5 a o Library Routine
I

Linear
Programming

Location

Logical
Operation

Loop

Magnetic Core

Mask

An encoding scheme by which m y one of a set of 50 characters may be represented in one column
of a card. Named for Herman Hollerith, the originator.

To set certain couhters, switches, or addresses at specified times in a computer program,

Information transferred from auxiliary or external storage into internal storage.

Commonly called I/O which refers to equipment or data involved with the information transferred
into the computer and information transferred out.

The continued repetition of the same operation or group of operations.

The placing of information such that any unused area is on the right.

A routine placed on file and available for general use.

A technique used in mathematics and operations research to find a best solution for a certain
class of problems.

A place in storage where a unit of data may be stored.

An operation or instruction which operates on the independent bits of a computer word.

A coding technique in which a group of instructions a r e repeated.

A small doughnut-shaped ferrite designed and constructed for on or off magnetization and
used to store information in the computer.

A fixed word pattern of bits used for the purpose of selecting o r eliminating bit positions from
other words.

An array of quantities in a prescribed form. The elements a re usually arranged in rows and
columns.

GLOSSARY

Pvliemory A memory is a device in which information can be stored. The term "memory': is normally
used with reference to quick access devices such as magnetic cores.

Mnemonic A mnemonic in coding refers to a symbol or word chosen to be similar to the name of the
item it represents (e. g. , THETA for 0, TWOPI for 277 , etc,) .

Mode A computer system of data representation; e, g., the binary mode.

Modulo A mathematical operator which yields the non-negative remainder function of division.

Monitor A program processor which exercises supervisory control over some other program or
collection of programs.

Multi~rocessing Solution of a problem by coordinated action of several computers.

Multiprogramming Solution of several problems simultaneously on a single computer.

I
Q, CI Nesting Including a routine or block of data within a larger routine or block of data.

I

Nu.mber System The representation of a quantity by a positional value to a given number base.

Numerical Analysis The study of methods for obtaining numerical answers to mathematically stated problems.

Object Program The machine language program which is the output after translation from the source program.

Off-line Pertainkg to the operation of input-output devices or auxiliary equipment not under direct
control of the central processing unit.

On-line Operation of an input-output device as a component of the computer under progrcammed control.

Open Shop A computing installation at which computer programming is performed by any qualified employee.

GLOSSARY

Routine

Scratch Tape

Shift

Sign Bit

Sort

A series of instructions which carry out a well defined function.

A magnetic tape used for intermediate results rather than for input, output, or filing.

A movement of bits, digits, or characters to the left or right.

A bit stored with a binary number to indicate the algebraic sign.

To arrange the items of a file in a specified order.

Source Language The form in which the program i s written on the coding sheet.

Storage

Subroutine

Table

Track

Transfer

Turnaround
Time

A general term for any device capable of retaining information.

The set of instructions necessary to direct the computer to car ry out a well defined mathematical
or logical operation at the request of another routine.

One o r more lists containing organized information.

A single longitudinal path as on magnetic tape.

An instruction which can alter the regular sequence of instruction execution.

The amount of time which elapses from submission of inputs for a computer run until the output
for that run is available,

Word Length The number of bits o r characters handled as a physical unit by the computer.

I PART I1

FORTRAN BASICS

TP. A FORTRAN Arithmetic Statements

11. A . l The FORTRAN arithmetic statement is designed to have the form of
a mathematical formula. The formula a = x + y, for example, is
written in FORTRAN as A = X + Y.

There is one arithmetic operation performed in the statement
A = X + Y. It i s

I
Q, II.A.2 Addition is one of the basic arithmetic operations. Others a r e
f subtraction, multiplication, and division. The FORTRAN langnage

uses the symbol + to indicate addition and -, *, and / for subtraction,
multiplication, and division, respectively.

Each of the following FORTRAN expressions use two basic arithmetic
operations. Indicate the missing operation in each case.

A t B + C addition and
A + B - C addition and
A - B / C subtraction and
A * B - C and subtraction

II.A.3 The FORTRAN expression A * B causes the value of A to be multiplied
by the value of B. The expression A * B - C will multiply the value of
A by the value of B then subtract the value of C from the result.

If the value of A is 20.0, B is 5.0, and C is 1 .0 , the result of the
expression A * B - C is

Answer: addition

Answer: addition
subtraction
division
multiplication

Answer: 99.0

II.A.4 The = in the FORTRAN arithmetic statement means to take the
result of the expression on the right and assign that value to the
symbol on the Ieft. The symbol on the left then retains that value
until it is assigned a new value by another statement.

If the value of A is 3.0, then the value of X after the statement
X = A is 3.0. If the value of A is 8.0, what is the value of X after
the statement X = A + A ?

11. A . 5 Another basic arithmetic operation permitted in FORTRAN is
exponentiation. This operation is indicated by two * I s . The
expression A * * K raises A to the Kth power.

List the symbols which correspond to the five operations listed
below. These symbols a r e called operators.

addition
exponentiation
multiplication
subtraction
division

II.A.6 If you had any difficulty with the last problem, s t a r t PART I1 over
again. See your advisor if it is not clear after the second pass
through the material. If you understand the material to this point,
you may continue.

Answer: 16.0

Answer: +
* *
*

Th. A. 7 A FORTRAN statement may contain several different operations.
For example, the statement D = X * * 2 + Y * * 2 + Z * * 2 contains
both exponentiation and addition. The statement D = X * X + Y * Y + Z * Z
i s equivalent to the one above but contains multiplication and addition.

The statement A + D * * 3 + B / X contains the three operations
, , and division.

II. A. 8 The order in which the operations are performed in a particular
FORTRAN expression i s determined by a few basic rules. The
importance of knowing these rules i s illustrated by the FORTRAN
expression W * G - P / Q * R. Without a definite order, this
expression could represent any of the following arithmetic formulas.

A FORTRAN arithmetic expression must represent one and only one
arithmetic formula. Therefore, it is necessary to have a set of rules
which govern the in which the calculations are performed.

11. A. 9 In a FORTRAN expression, all exponentials a re evaluated before the
other operations are performed. The exponentials a re evaluated in the
order they occur from left to right.

In the expression X * * 2 + D * Y , the first operation performed
is

Answer : exponentiation
addition

Answer: order

Answer: X * * 2

11. A . 10 After all exponentials a re evaluated, the multiplications and divisions
a re then performed in the order they occur from left to right.

In the expression A * X - Y / D, the second operation performed
is

11. A . 11 After all exponentials , multiplications, and divisions have been
performed, the additions and subtractions a re performed in the order
they occur from left to right. Thus, the three-level hierarchy of
operations is :

1) exponentiation
2) multiplication and division
3) addition and subtraction

Indicate the f i rs t operation which will be performed in each of the
following statements :

Answer: Y / D

Answer: R + B (addition)
X * * 2 (exponentiation)
Y * * 2 (exponentiation)
A * B (multiplication)

II. A . 12 If you had no difficulty with the last problem, give yourself a gold
s t a r and go to 11. A. 14. Otherwise, continue.

11. A . 13 Now let us consider the operational hierarchy of each statement
in 1I.A. 11.

There a re no exponentiations, multiplications, or divisions. Thus,
the only operations involved all belong to the third level of the
operational hierarchy and are performed in the order encountered
from left to right.

In this example, there a re operations from all levels of the hierarchy.
The operation which is performed first in this case is the exponential,
X ** 2. Next the multiplications and divisions a re performed in the
order they occur from left to right. Next the additions and subtractions
are performed. In this case only one subtraction is encountered.

In this case, there are two exponentials to be performed and they are
carried out ki the order they occur from left to right. Thus, the opera-
tion P * * 2 is performed first. After the second exponential, Z * * 2,
a search is made for multiplications or divisions. Since there a re none,
a third scan is made to find additions and subtractions. Thus, the last
operation is the addition of the two exponentials.

Here all operations belong to the second level of the operational hierarchy.
Therefore, they a re performed in the order they occur from left to right.
In this case, we have the operation A * B. The next operation divides this
result by C.

11. A . 14 The statement B = X / A * C always corresponds to the arithmetic
X formula b = - . c . This is true because multiplication and division
a

have equal priority and the division occurs f irst in the statement.

Write the arithmetic formula which corresponds to the FORTRAN
statement X = G / T * * 2 * H.

1I.A. 15 Parentheses may be used to c w g e the order of operations.
Think about expressing s = -

db
as a FORTRAN statement.

The FORTRAN statement S= A/(D*B) corresponds to the
a arithmetic formula s = -

db '

The order in which the operations a re performed may be changed by
the use of

II-A. 16 The use of the parentheses in FORTRAN expressions is essentially
the same as the use of parentheses in arithmetic formulas. The
first and most important thing to remember is that parentheses must
be used in pairs.

The number of left parentheses in a FORTRAN statement must equal
the number of parentheses.

Answer: x = . h
t2

Answer: parentheses

Answer: right

II. A. 17 Nesting of parentheses i s permitted. This means that a pair
of parentheses may lie entirely within another pair. When
parentheses are nested, the expression within the innermost
pair of parentheses is evaluated first.

In the statement A = ((B - C) * D) /R, which operation is
performed first?

II. A. 18 The expression within the innermost set of parentheses i s
evaluated according to the hierarchy of operations discussed
earlier.

The three levels of the operational hierarchy are 7

and , and and

II. A. 19 Once the value of the expression within a set of parentheses has
been obtained, that value is then used in evaluating the expression
contained within the next outward set of parentheses.

The expression (X + Y) / (A + D) will add the value of X to the
value of Y and then divide the result by the sum of

andD.

Answer: B - C

Answer: exponentiation,
multiplication, division,
addition, subtraction

Answer: A

11. A . 20 It is usually obvious when parentheses are needed to obtain
the desired result. Some situations arise, however, when
it is not immediately apparent that parentheses are required.
A good rule to follow is to use parentheses if there is any
doubt. No harm results from extraneous parentheses as
long as they are used in a meaningful way.

Pick the expression where a set of parentheses are used
incorrectly.

II. A . 21 If your answer was 1 , go back to IZ. A. 14. If your answer
was 2 , remember that too many parentheses are not harm-
ful as long as the expression is meaningful. Expression 3
has no meaning and is , therefore, an incorrect use of
parentheses.

11. A. 22 One common error in FORTRAN is the omission of the multi-
plication symbol. In FORTRAN, all operations must be
indicated by the use of the proper symbol.

The expression (A + B) (-D) is incorrect because no operation
appears between the two parentheses.

Answer: 3

Answer: symbol

I3C. A. 23 The expression (-D) is a proper use of the negative operator.
Care must be taken, however, to avoid the use of two operators
next to each other.

The statement X = -A+B is correct. The expression R * - S is
not correct. Write the expression in its correct form.

II. A. 24 Previously, only one letter has been used to identify each
I variable. If we continue in this manner, a program would be
4
~3 restricted to twenty-six variables. To remove this restriction,
I

each variable may be defined with any combination of 1-7 char-
acters (numerals or letters) beginning with a letter.

A variable name must not contain more than char-
acters. The first character of a variable name must always
be a

XI. A . 25 There is one exception to the above rule. The letter O followed
by six numerals is@ a valid variable name (to be explained later).

Pick the three hcorreet symbols (or identifiers) from the
following list: 7 ,

Answer: R*Q-S)

Answer: 7 , letter

Answer: 3, 4, 5

II. A . 26 If you answered II. A. 25 correctly, go to II. A. 28.
Otherwise, continue.

II. A. 27 The third symbol is not correct because it has more than
seven characters. The fourth begins with the letter 0 and
is followed by six digits. The last begins with a numeral.

II. A. 28 It is often useful to make the program identifiers resemble
the actual quantity. An illustration i s given in the following
computation of centripetal force.

FORCE = MASS * (VEL * * ~/RADIUS)

In the above statement, the numerical value of FORCE be-
comes if MASS is 16, VEL is 1 0 andRADIUS
is 5.

I
4
W
I II. A. 29 Up to now, we have only considered individual FORTRAN

statements. In practice, many statements are usually required
to solve a particular problem. Unless otherwise directed by
methods you will learn later, the FORTRAN statements are
executed sequentially.

The statements ACCEL = VEL * * z/RADIuS
FORCE = MASS * ACCEL

are equivalent to the one statement ill II. A. 28. Assuming the same
values as in 11. A. 28, what value is assigned to the variable ACCEL?

Answer: 320.0

Answer: 20.0

11-A. 30 The advantage of using two statements is that the acceleration,
ACCEL, is available for use in other statements.

If the v a h e of A is 20.0 and the value of B is 5.0, what are
the values of A and B =r the two statements?

Ee A. 31 The first statement above assigned a new value to A. This
value is 25.0. It is obtained by adding the current values
of A and B. The new value of A is then used in the second
statement to obtain the new value of B.

g, A,. 32 You will be provided with FORTRAN coding forms for use in
writing your programs. These forms are not all alike but the
basic format remains the same. The following illustration
shows the format of a typical coding form.

,---- C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT
50 .

Answer: 25.0, 30.0

11. A. 33 Notice that the columns on the coding form are numbered from
1-80. These columns correspond to the 80 columns on the
computer cards which are used to input information to the
computer.

There are columns on the FORTRAN coding form.

II. A. 34 After the FORTRAN program is written, the information on the
coding forms is keypunched into computer cards. The inform-
ation in each non-blank line on the coding form is punched into
one computer card.

After a program is written, keypunch operators transfer the
information from the to computer cards.

II.A. 35 Columns 7-72 are used for writing the FORTRAN statements.
Normally, a statement will start in column 7 and use as many
columns as are needed to complete the statement.

FORTRAN statements must not s tar t before column
or extend beyond column

lI.A. 36 Suppose we get to column 7 3 and have not completed the statement.
In this case, the next card must be marked as a continuation card
and the statement continued in columns 7-72. Any card which has
a non-zero punch in column 6 i s considered to be a continuation of
the previous card.

A limit of 1 9 continuation cards may be used for a single statement by
punching a letter or non-zero numeral in column of each
continuation card.

Answer: 80

Answer: coding forms

Answer: 7 , 72

Answer: 6

11. A. 37 Continuation cards may be used when necessary on all FORTRAN statements.
Statement 20 in the example below is punched on a total of four computer cards.

C for Comment FORTRAN CODING FORM

tate-
FORTRAN STATEMENT

5 0

Statement 20 is an exaggerated use of continuation cards.
Actually, the computation of X would normally require only

Answer: one

II. A.38 Except for a special case which will be considered later,
all blanks which occur in columns 7-72 are ignored by the
compiler.

The following two statements are equivalent. True or false?

FORTRAN CODING FORM

FORTRAN STATEMENT
5 0. -

11. A.39 The two statements in II. A. 38 are equivalent because the blanks
which appear in columns 7-72 are ignored by the FORTRAN compiler.

II. A.40 Columns 1-5 may be used to identify a particular statement by
assigning it a unique statement number. This statement number
can be any integer from 1 through 99999.

The same statement number must not be assigned to more than
one statement. True or false?

Answer: True

Answer: True

11. A.41 There is no need to assign every statement a number. In
fact, only a small percentage of the statements will require
statement numbers. The reasons for assigning statement
numbers will become apparent later.

Not all statements require statement numbers. True or false?

11. A.42 When the statement number is interpreted by the FORTRAN
compiler, blanks and leading zeros are ignored.

The following statements a11 have the same statement number.
True o r false ?

C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT
50

Answer: True

Answer: True

1.1. A.43 In the last example, we drop all zeros and blanks which
occur before finding a non-zero numeral. Consecutive
blanks on the right end are also dropped. Therefore,
the statement number associated with each statement is 20.

The four statements shown in the last example must not
appear in the same computer program. This is true because
they all have the same

11. A.44 Statement numbers may be assigned in any order. Since a
statement number is used as an identifier for one particular
statement, the value of a statement number is not related to
its position in the program.

The example below shows some valid statement number
assignments .

Answer: statement number

I
4 co f--c for Comment FORTRAN CODING FORM
I

tate-
jnent No,o

+ FORTRAN STATEMENT
5 0

XI. A. 45 Columns 73-80 a re not scanned by the FORTRAN compiler.
It is suggested that these columns be used to identify your
program and to provide sequence numbers in case of dropped
cards, etc. For example, the first h7o statements of a program
to calculate the roots of a polynomial might contain the following
in columns 73-80.

Numbering by fives or some other increment larger than one
provides flexibility for later program changes.

Columns 73-80 are used for punching the FORTRAN statement.
True or false?

II. A, 46 It is often convenient to write comments which describe the
computations being performed, These comments may be
written on the coding forms by putting the letter C in column 1.
These comments will appear on computer listings.

A C in column 1 indicates that the card contains

II. A. 47 Before continuing with section B, work exercise II. A in your
workbook.

Answer: False

Answer: comments

11. B Data

11. B. 1 In the expression X**2, the quantity 2 is used in obtaining the
square of X. When the number itself is used in a FORTRAN
expression, it is called a constant.

The 2 in the expression X**2 is called a Answer: constant

II. B. 2 In the expression 3.0*X+6,0, the values 3.0 and 6.0 a r e constants.
Coastants a r e used in FORTRAN expressions in exactly the same
manner as variable names.

In the statement A=20.0*B+4.0, the value of B is multiplied by 20.0
and the result is added to Answer: 4.0

II. B. 3 You may have noticed that some of the constants in previous examples
were written with decimal points and some were written without

I
00
CL

decimal points. This was done to illustrate the two principal types
I of constants. The constant written without the decimal point is called

an integer constant. The name describes the set of values which can
be represented by this type of constant (integers).

In the FORTRAN statement L = 5+7*J, there a r e two integer constants.
What a r e they? - Answer: 5, 7

II. B. 4 The constants used in previous examples which included a decimal
point are called real constants. Here again the name suggests the
range of values which can be represented by this type of constant
(real numbers).

The expression X**2-5.4*C contains both an constant .
constant. anda ~ n s w e r : integer, real

II.B.5 Real constants may be written in several difIerent forms. All of
these forms have two common characteristics, however. They are:

I
a,
to
I 1) Every real constant must contain at least one and not

more than 15 decimal digits.

2) Every real constant must have a decimal p o r n

Select the one value which is not classified as a real constant.

III. B. 7 Constants used in scientific work are often expressed as a value
multiplied by a power of ten. For example, .34 X 10'~ is a
shorthand method for writing .00000034. Real constants in
FORTRAN may be written in a similar form. The value .34 X

is written in FORTRAN as .34E-6 or 3.4E-7 or .034E-5 or etc.

Write the actual value of each of the following real constants.

1) .10E2 Answer: 10 .0
2) 10. E-2 . 1
3) .004E+4 40.0

PI. B. 8 Notice that the power of ten is always written as a positive or
negative integer. If no sign is indicated, the value is assumed
to be positive.

Select the real constant which is not written correctly.

II. B. 9 In number B.B. 8, 4), the power of ten multiplier is written a s a real
constant. This value is restricted to positive or negative integers.

Classify each of the following constants as either real or integer.

Real constants may be zero or any positive or negative value between
10.0E-294 and 10.03322.

Answer: integer
real
real
integer
real
real

The value 25.OE400 is not a valid real constant because it is too
Answer: large -

II. B. 11 A variable is a qumtity (represented by a symbol) which may have
different values assigned to it during execution of the program.

The value of a variable may be changed at any point in the program
while the value of a constant always remains fixed. True or false? Answer: True

II. B. 12 The value of a variable may be changed as often as necessary to
obtain the desired result.

In the following example, the value assigned tb the variable X after
statement 10 has been executed is , The value of Y after
statements 10 and 20 have been executed i s

C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT

I
00
cn
I 11. B. 13 The two principal types of variables used in FORTRAN statements

a re integer variables and real variables. Integer variables, like
integer constants, can only be assigned integer values. Real
variables can be assigned the value zero or any positive or negative
value between 10.03-294 and 10.03322.

The two principal types of variables are variables and
variables.

Answer: 5.0, 50.0

Answer: integer, real

TP, B. 14 Integer constants are distinguished from rea l constants by the
presence or absence of a decimal point. The usual way of dis-
tinguishing between integer variables and real variables is by
proper selection of the variable name. Variable names begin-
ning with any of the letters I, J, K, L, M, or N are considered
to be integer variables. '&

Q)
I

Classify each of the following variables as either real or
integer.

1) RADnrS
2) JCOUNT
3) ACCEL
4) x
5) K .

Answer: real
integer
real
real
integer

II. B.16 Integer constants and variables a re stored in the computer with
the binary point assumed to be at the right hand end of the computer
word. The mode of operation involving Integer constants aad vari-
ables is called fixed-point or integer arithmetic.

A l l arithmetic in the statement K = J - L is performed in the
mode.

Answer: fixed-point

11. B.16 Real constants and variables permit fractional values and, therefore,
must be stored in computer memory along with an indicator which
provides information on the position of the binary point. The
binary points must be aligned by the computer before the operation
can take place. The mode of operation involving real variables and
constants is called floating-point arithmetic.

Since most applications require fractional values, calculations are
generally performed in the mode.

II.B.17 Remember that fractional values cannot be carried in the fixed-point
mode. Therefore, a division of two fixed-point values will result in
the loss of any remainder; this is called truncation.

If the value of J is 7 and L is 5, the result of the expression J /L is

II. B.18 Work exercise IiI. B in your workbook before starting section II. C.

Answer: floating-point

Answer: 1

11, C Mixed-Mode Expressions

11. C. 1 In some instances, it is convenient to write expressions which con-
tain a mixture of real and integer quantities. If no exponentiation
is involved, the two modes may be mixed without any restrictions.
Generally speaking, mixed-mode and fixed-point mode arithmetic
require more comp~ter time and memory location than does
floating-point mode arithmetic.

Integer and real quantities may be mixed freely in the same expres-
sion as long as there is no e~onentiatiorz. True or false? Answer: True

Within a pair of parentheses where the mode is constant, all com-
putation within those parentheses will be carried out in the mode of
the quantities present.

In the statement X = 2*(4-J), the mode of (4-5) is Answer: fixed-point

If the mode i s mixed and no parentheses are present, the integer
quantities are converted to real and the calculations are performed
in the floating-point mode.

Suppose each of the following expressions is evaluated. Give the
mode of the result of each expression.

1) (L-M) Answer: fixed-point
2) (X-3*P) floatinwoint
3) Y-L/K floating--point
4) Y-(L/K) floating+oint

11. C.4 Let us examine each expression in 11. C. 3 when

Number 1 is composed entirely of integer quantities. Therefore,
it will be evaluated in the fixed-point mode.

II.C.3 1.) (L-K) = 3

Numbers 2 and 3 are mixed expressions with no parentheses within
the expression and the integers a re converted to floating-point form
before the expressions are evaluated.

II .C.3 2 .) (X-3*P) = 20.5 - 3. * 5 .3
= 20.5 - 15 .9 = 4 . 6

In 11 .6 .3 3 .) notice that both L and K are converted before the
division takes place and the result of the division is in floating-point
form.

In this case L/K is not truncated.

II. 6.4 Number 4 is also mixed mode, but it contains an all fixed-point
(C ont .) expression within a set of parentheses. This fixedpoint expression

is evaluated first giving a fixed-point result. This result is then
converted to floating-point form and subtracted from Y. In this
case the result of L/K i s truncated.

When an expression contains exponentiation, the following rules
determine the type of the result obtained.

1) Integer to an integer power gives an integer result.
2) Real to a real power gives a real result.
3) Real to an integer power gives a real result.
4) Integer to a real power is not allowed.

Indicate the type of result given by each of the following expressions.

Answer: real
real
hteger
real

II.C.6 Now let us consider an exponential as part of a larger mixed mode
expression. First, determine the mode of the result of the
exponentiation. Ned, consider this result as a quantity to be
used in the larger expression and apply the rules for mixed mode
expressions.

One of the following expressions is not valid. Indicate the type
of result given by the following valid expressions.

1) L-P*3 Answer: integer
invalid 2) R-J**B real

3) K+R**Y

II. C. 7 In the previous expressions, the second is not valid since an
integer raised to a real power is not allowed. In the remaining
two examples, the type of result obtained from the exponentials
is determined first. In the first expression, the result i s an
integer.which i s then subtracted from an integer. Thus, an
integer value is obtained. In expression 3, the result of the
exponential is a real quantity. The expression i s now mixed
since it contains a real quantity and an integer quantity. There-
fore, the integer is converted to real form and the addition is
performed in the floating-point mode yielding a real result.

II. C. 8 In a FORTRAN arithmetic statement, the evaluation of the
expression on the right hand side of the = results in a single

__-------=*- \
value. The type of this result depends on the operations involved _-- _ -4

...A, -
- - --.-- -----

and the types of the different variables which appear in the
expression. If the variable on the left of the = is not the same
type as the result of the expression on the right of the = , the
result of the expression is converted to the type of the variable
on the left.

For example, I = X+Y will convert the result of the expression
X+Y to integer before assigning the value to I. This results in
the loss of any fractional part. The conversion (if needed)
across the = is always to the type of the variable on the
of the = . Answer: lef%

II. 6.9 Work exercise II. C in your workbook.

Arrays and Subscripted Variables

Sometimes it is necessary to have several values of one variable
available for computation. For example, values from a table of
hourly temperatures over a 24 hour period are referenced as T (I),
T (2), T(3), . . . , T(24). The variable T in this case is called
a subscripted variable.

A subscripted variable provides a means for associating several
values with a single variable. True or false ? Answer: True

II.D.2 A variable is defined as a subscripted variable by use of a
DIMENSION statement. The following statement defines the
variable X as a subscripted variable.

I
tD
W

I

A variable which appears in a DIMENSION statement is called
a variable. Answer: subscripted

IJ. D. 3 The value 2 in the statement DIMENSION X(2) indicates that the
dsta array X mar contain a maximum of two values. The maximum
values of subscripts which appear in DIMENSION statements are
restricted to integer constants except in one situation which will be
discussed later.

. ,
The statement DIMENSION A(20), Y(300) defines' A and'Y as sub;
scripted variables and reserves computer memory for up to

values of A and values of Y. Answer: 20, 300

11. D. 4 The value of the subscript determines which quantity in the data
array is refereliced. For example, the following statements store
values into the fourth and fifth locations of the array XTAB and
into location ninety of TEMP.

fff C for Comment FORTRAN CODING FORM
1 tate-

ent No
L I T -

' FORTRAN STATEMENT

The type of a subscripted variable is determined in the same manner
- . as the type of a simple variable. What is the type of Qe subscripted

variable TEMP ? Answer: Real

In the previous examples, only subscripted variables with one
subscript have been shown. It is also permissible to define
variables with two and three subscripts. The following
DIMENSION statement defines variables with one, two, and
three subscripts.

A subscripted variable may be defined with one, two or three
subscripts. True or false ? Answer: True

A data array defined with one subscript is referred to as a one-
dimensional array. The terms two and three-dimensional arrays
a r e used to refer to variables with two and three subscripts,
respectively.

A subscripted variable with two subscripts is referred to as a
dimensional array. Answer: two-

11. D. 7 The value of a particular subscript is called an index. The index
must be an integer constant, an integer variable, or the integer
result of simple arithmetic operations.

Pick the one statement with an invalid subscript.

F O R T R A N

Let us examine the FORTRAN statements used in the last auestion.
First, the DIMENSION statement defines three arrays. The first is
two-dimensional and the second and third are one-dimensional.
Statement 5 computes Y using values from ZTAB and K. J is then
computed using existing values of L and N. The next statement
illustrates the use of integer variables and simple arithmetic
expression as indices. Statement 10 is not valid because a real
variable cannot be used as an index.

IDE?4TIFICATION
A N D SCQUENCING I

Answer : Statement 10

11. D. 9 In the statement, DIMENSION ZTAB (20, 30), the values 20 and 30
represent the maximum values of the first and second subscript
respectively. This statement causes the reservation of enough
computer memory for a maximum of 600 values of the variable
ZTAB. The maximum number of values is always the product of
the maximum values of the subscripts.

Determine the maximum number of values which may be assigned
to each of the variables in the following DIMENSION statement.

DIMENSION X(3, 30,4) , Y(20, 60), K(2,3), P(10)

11. D. 10 If a subscripted variable is referenced as a simple variable, all
subscripts will be assigned the value 1. For example, the expres-
sion Y*ZTAB+B will be interpreted as Y*ZTAB(l, 1) +B(1) if B
and ZTAB have been defined as one- and two-dimensional variables,
respectively.

In general, an index of 1 will be assumed for all subscripts missing
on the right. KTAP(1) implies KTAP (I, 1 , 1) if KTAP is a
dimensional array.

11. D. 11 Two-dimensiohal arrays are often thought of as a rectangular array
where the first subscript represents the row number and the second
subscript represents the column number.

If AMAT is a two-dimensional array, write the expression which
multiplies the value in row 6 column 8 by the value in row 1 column 3.

Answer: three-

Answer: AMAT(6, 8)*AhIAT(l, 3)

II. ID. 12 As a review of subscripted variables, fill in the following b l

A subsesipted variable must be defined by the use of a
statement. This DmENSPON statement may define several sub-
scriphd v a r a l e s if they a re separated by . As ina l l
FORTRAN statements, continuation cards may be used if
necessary. If X has been defined as a orn-dimensional array, the
use of the variable X without a subscript in an arithmetic s t a t ema t
will always reference . The expression X(5)*X(6) will
multiply the fifth and values of the array X. Of course,
we have assumed here that the array was defined with -at b a s t

values. If AliVLAT h w been defined as a Cwo-dimensional
array wit& 20 rows and 40 columns, the maximum'nunnbes of values
which e m be assigned to A U T is 20 X 40. The row index must
never exceed and the column index must never exceed 40.

H. D. 13 The reference manual* gives information on how data arrays a re
stored in computer memory. This information is not necessary for
writing FORTRAN programs if the programmer remembers that he
must use the same indices to reference a value as were used in
storing the value in the array. This means that if a value is stored
in AMAT (6, 10), then any reference to the value must have the same
indices. The indices a re not required to have the same form, however,
The reference could be X*ANIAT(I, J) as long as the value of I is 6 and
J is 10.

11. D. 14 Work exercises II. D in your workbook.
C;

Answer: DIMENSION

commas

*
CONTROL DATA FORTRAN REFERENCE MANUAL

11. E. 2 A provision i s made which permi ts t h e t ype of a s p e c i f i c var iable
to be declared in the program. This i s accomplished by the use
of a type declaration statement. The type declaration m n t appear
before the variable is used.

A variable named COUNT is normally a variable. It
may be declared an integer by use of a type declaration statement.

TI. E. 3 The type declaration statement consists of the type followed by
the variables being declared as that type. The variable names
are separated by commas. The following statement will cause
X I , X2, and X3 to be considered integer variables.

,iff C for Comment FORTRAN CODING FORM
I

FORTRAN STATEMENT I I

I , , , , 1 1 INTEGER X l , X 2 , X 3
I l I L I I I I I I I I i l I l I I I I I I l I I I . I l L I I I I l l l I I I ~ l . - L _ I - L ~ L!

An integer variable does not need to appear in a type statement
if the variable name begins with one of the letters , .
K, L, M or

Answer: r e a l

Answer: I, J, X

The following statement will cause K1, K2, and K3 to be considered real variables.

C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT
50

,R,Efi,L,KI,, ,y ,, ,K 3
l - L _ 1 - 1 I 1 I 1 I I I I I Illlrl I 1 I 1

CObiTT is a real variable only if it is declared a real variable by use of a type statement.
True or false Answer: False

A l l variables which a re complex must appear in a type statement. Here, the word
complex has the same meaning as complex numbers used in mathematics. The follow-
ing statement defines E, EA, and EG as complex variables.

- C for Comment
FORTRAN CODING FORM

.I I

FORTRAN STATEMENT
51)

Each complex value has two parts, a real part and an imaginary
part. Thus, a complex constant is composed of two parts. These
two parts a re separated by a comma and enclosed in parentheses.
Each part must be a valid real constant. The following statements
illustrate the use of complex constants and variables.

- C for Comment FORTRAN CODING FORM
t l

FORTRAN STATEMENT
50

In the first statement, A and XTAB a re defined as variables.
The variable A may be assigned a maimurn of values. This means
four complex values since A is defined as in the second
statement. Remember that the real and imaginary part constitutes one
complex value. The arithmetic operations performed in statement nulpber
10 a re carried out according to the usual rules of complex arithmetic. The
values in each part of complex constants must conform to the rules for

Answer: subscripted
4
complex

real constants.

Variables and constants can also be defined in the DOUBLE
PRECISION mode. This type of variable is used only when
accuracy requirements demand that more than fifteen signi-
ficant decimal digits be carried during arithmetic operations.

Just like complex variables, all double precision variables
must be declared in a statement.

11. E.8 Double precision variables must be declared in type statements
using either DOUBLE PRECISION or simply DOUBLE.

For example,

DOUBLE PRECISION A, R, Q

DOUBLE X, Y

will make the variables A, X, , , and- double
precision.

Answer: type

Answer: R, Q, U

Double precision arithmetic requires that two computer memory
locations must be used for each value. One contains the most
significant part of the word and the other contains the least
significant part. Special procedures have been developed to
c a r r y out arithmetic on values in this form. This does not
concern the programmer except that he should remember that double
precision arithmetic i s considerably more complicated and, therefore,
takes much more computer time.

For the 20 digit number 98989898981212121212 the most significant -

half of the number i s 9898989898 x 10'' and the least significant
ha'lf of the number is 1212121212.

Double precision and complex arithmetic is very valuable when
needed. It should be remembered, however, that execution time
on the computer is much in these modes.

II. E. 10 A double precision constant differs from a rea l constant in that
every double precfsion constant must be written with a power of
ten multiplier. The power of ten in this case is denoted by a D
instead of E which is used for rea l constants. Up to 29 digits
may be used in writing double precision constants.

Classify each of the following constants as integer, real , or
double precision.

a.) 10
b.) 20.0
c.) 21.00E-3
a ,) a s s . o e 2
e .) .075D3

Answer: greater

Answer: a.) integer
b.) real
c.) r ea l
d.) double

precision
e.) double

precision

11. E.ll The last type of variable to be discussed is the logical variable.
This variable must also be declared in a type statement.

The following statement will cause A, B, and C to be considered
logical variables.

CODING FORM

All logical variables must be declared in a statement.

A logical variable is similar to an on-off switch. It is either zero
or non-zero. If it is non-zero, it is said to have the value . TRUE. .
If it is zero, it is said to have the value . FALSE. .

A logical variable can have the value or the value

Answer: type

Answer: . TRUE. . FALSE.

II. E.13 In previous examples, we have always considered FORTRAN
statements executed in sequence. In PART IIC of this manual you
will see how to change the order of execution based on the results
of certain computation. For example, the roots of a quadratic
must be computed in one way if b2 - 4ac i s positive and a different
way if it is negative. If a logical variable is set t o .TRUE. in one
case and . FALSE. in the other, it may be interrogated later in the
program to determine which computation was made.

11. E.14 Since there are only two possible values which a logical variable can
assume, there are only two logical constants. They a re .TRUE. and
. FAME. . The three statements below illustrate the use of logical
constants.

FORTRAN CODING FORM

Statement 5 will cause the variable K to be set to . The
next statement will set A to a non-zero value. Specifically, each binary
digit will be set to a 1. Answer: zero

II. E. 15 The two logical constants may be shortened to . T. and . F. for
convenience.

Logical constants may be written as . T. and . F, instead of
and

11. E, 16 This completes the definitions of the five variable types. Two more
constants remain to be discussed, however. The first of these is the
octal constant. This constant permits a number written in the octal -
system to be used in FORTRAN statements. This constant is gener-
ally used when a particular se t of binary digits is required.

Since each octal digit converts to three binary digits, the sixty bits
in a computer word is equivalent to octal digits.

11. E. 17 An octal constant is right adjusted in the computer word. This means
that if fewer than twenty octal digits a r e specified, then the unused binary
digits on the left a r e se t to zero.

Answer: .TRUE. , . FAME.

Answer: 20

If an octal constant contains ten digits, it will be converted to thirty
binary digits which will occupy the right hand half of the computer word.
The left hand half will be set to Answer: zero

II. E. 18

II. E. 19

II. E .20

The first method which can be used to write an octal constant is
the letter 0 followed by at least six octal digits and not more than
twenty octal digits. The second method to write an octal constant
is to follow a set of octal digits by the letter B. Here again, the
number'of octal digits must not exceed twenty.

One of the following is not an octal constant. Indicate which &d
tell why.

The last constant to be defined is theHollerith constant. This
constant provides a means for converting characters (letters,
numbers, and special characters) to the 6000 series console display
code. Each character is represented in the computer by a unique
set of six binary digits. Thus, ten characters may be stored in each
computer word.

Each character is represented in the computer by a unique set of six
binary digits. The word THE requires binary digits.

The Hollerith constant is written with the number of characters, the
letter H, then the characters to be converted to display code. For example,

will convert TESTING to display code.

The 7 in 7HTESTING indicates the of characters to be
converted.

Answer: 0653 is a variable
name

Answer: 18

Answer: number

11. E. 2 1 A blank is considered a special character and has its own display
code. Therefore, blanks within the count specified for a Hollerith
constant a r e not ignored.

Indicate the proper character count for the following Hollerith
constant.

HAT THE ZOO - ----------

TI[. E. 22 When less than ten characters a r e used, the Ebllerith constant is
left adjusted and blank characters a re added on the right end.

If the character count is six, how many blank characters a r e
added to the right end of the Hollerith constant?

II. E. 23 Two variations may be used in writing ~0l ler i t .h constants. These
variations replace the H with the letter L or R. When ten characters
a r e used, the same result will be obtained by using H, E, or R. If
less than ten characters a r e used, the use of the letter L will cause
the characters to be left adjusted in the computer word. The use of
the letter R will cause the characters to be right adjusted in the
computer word. In both cases the unused portion of the computer
word is filled with binary zeros instead of blank character codes.

Answer: 1 0

Answer: 4

XI. E. 23 Now let us compare the three statements
(Cont.)

a.) A = 4HTEST
b.) A = 4LTEST
c.) A = 4RTEST

Their differences can best be illustrated by examining the contents
of the computer location which contains the variable A after the
execution of each instruction. Let b denote the character blank.

computer location A

TEST I b b b b b b

b.) A = 4LTEST

c.) A = 4RTEST

- -- -

24 bits 36 bits

24 bits 36 bits

36 bits 24 bits

The use of the letter H causes the unused portion of the computer
word to be filled with characters. The use of the letter
L causes binary to be used for the same purpose.

Answer: blank
zeros

II. E. 24 The next section will give additional information on some uses of the
octal and Hollerith constants. At this point work exercise 11. E in your
workbook.

Logical Operations

Previously we considered the different arithmetic operations. In
this section the three logical operations will be discussed. The
arithmetic operations were based on the operations of basic arith-
metic. The logical operations are based on Boolean algebra.

The three logical operations are .AND. , . OR. , and . NOT. .
Logical operations can be performed on variables, constants,
or expressions of any mode.

Logical operations may be performed on octal constants. True
or false?

The result of a logical operation is considered to be in the logical
mode. This result may be used in mixed mode expressions or
assigned to a variable of any type.

Consider the FORTRAN statement

Answer: True

FORTRAN CODING FORM

FORTRAN STATEMENT
5 0

The value on the right side of the equal is the result of a logical operation
and, therefore, is in the mode. When this result is assigned Answer : logical,
to I, it becomes an integer value, but no occurs across the equal. eonversim

TI. F.4 The Iogieal operations a re performed on the binary digits. In
the case of the .AND. operator, each binary digit of one
value is compared with the corresponding binary digit of the
other value. If the binary digit of the first value and the
corresponding binary digit of the second value m e both 1, the
correspondhg binary digit of the result is a 1. All other binary
digits in the result are 0.

Consider the FORTRAN statement

,---- C for Comment
FORTRAN CODING FORM

1

FORTRAN STATEMENT
5 Q

What is the value of I after execution of the statement ? ,

II, F. 5 The previous result was obtained by examining the binary digits
in the two values.

The second binary digit counting from the right end of the value
i s the only position which has a 1 in both values. This, by definition,
gives a I digit in the result. I is then set to this value without
conversion and 0102 = 2 .

Answer: 2

The logical .OR. compares corresponding binary digits and whenever a 1 is
present tn either operand the result is a 1.

Consider the statements

,f-- C for Comment
FORTRAN CODTNG FORM

1

FORTRAN STATEMENT
plentNppl I! 7 5 0

rate-

What is the value of R in octal after the execution of three
statements ?

The previous answer is determined by looking a t the binary digits
of the values involved.

Answer: 258

Since the result of the .OR. operation is in the logical mode, no
conversion is made across the equal.

B;i, F. 8 The operator .NOT'. operztes on a single value, The result of
this operation is a value wbieh contains ones tvhere the operand
contained eeipas and zeros where the operand eontaked ones.

Consider the statemellks

FORTRAN CODMG FORM

E A has the value . TRUE. , what is the value of L after the
execution of the statement ?

11. F. 9 In the previous example, A i s .TRUE.. This means that all
binary digits in A are equal to 1. Since (. NOT. A) changes all
binary digits in A, the result is zero. Since I is a logical variable,
a zero value is considered to be the value . FALSE. .

Answer: . FALSE.

PI. IF. 18 Work exercises 11. F in your workbook.

More on Mixed Mode Expressions

Mixed mode expressions were presented earlier for real and integer
variables and constants. Now we must expand this concept to include
the additional variables and constants which have been discussed since
that point.

Suppose the expression within the innermost set of parentheses i s being
evaluated. If all variables and constants a r e of the same type within
these parentheses, no conversions a r e necessary and the result is of the
same type.

In an earlier section, you learned that the mixture of real and integer
types in an arithmetic expression gave a result in the mode.

If the variables a re not of the'same type in an arithmetic expression,
the order of dominance is:

1) complex
2) double precision
3) real
4) integer
5) logical

The result of an arithmetic expression will be the type of the most
dominant variable present in the expression.

The result of the expression (J - K) i s

Answer: real

Answer: integer

1 1 . 6 . 4 Except for the logical type, the general rule i s that the values a re
converted to the most dominant type present and the expression i s
evaluated in that mode. No conversion is performed on logical
variables and constants, but the evaluation i s still performed in the
mode of the most dominant type present.

Consider the expression (A + K) . If A is double precision and K
i s integer, K i s converted to and the addition
i s performed in the double precision mode.

II. 6 . 5 In mixed expressions, exponentials should be considered as a
I separate expression to be evaluated first. The result of the exponential
w
CL
0-2

can then be considered a s a value within the original expression. The
I following table shows the type of the result of A**B for A and B of

different types.

Type of B

Type of A

N means not allowed

Type of A**B

From the above table, what i s the type of the result when a complex
value is raised to an integer power?

Answer: double precision

Answer: Complex

Introduction

In the preceding section you learned to refer to constants, variables, and expressions in
FORTRAN notation and to use these quantities in mathemaucal computations. m e writing
of FORTRAN statements in the proper order describes a mathematical problem which may
be solved by a computer.

You learned that the computer executes sbtements in the order which they a r e written, The statemenb

F O R m = SS * ACCEL

cause the computer to calculate FORCE first , and then DIS. Furthermore, a s this stands, the
computer will execute each of these statements just once for each time you write it.

Now you will learn how the use of control statements will enable you to tell the comprrter to
and execute certain statements out of the normal order, and whether to the opra t ion more than
once for each time you have written the statement. You will be able to tell the computer how many
times to @ back and repeat this operation; o r you may choose to instruct the computer to decide
how many times to repeat this loop, based on signposts (values) you will provide, and then b give
you a record of action taken by means of variables you can interrogate.

Further, when you inkrrogate any variables, you will find the answer in a format you have specified:
either a logical tnae/false, o r a computed value within a range of specified values. You will have
already written statements telling the computer what to do next based on these values, o r whether to
continue o r to stop because your program has come to the end of the statements you have written.

III.A.3 Based on the foregoing, i t can be seen that control statements give
the programmer a powerful tool that frees him from unnecessary
extra writing and speeds the work of the computer by providing i t
with advance instructions as to what to do in all predictable conditions.

If a FORTRAN program logic uses control statements properly, the
programmer needs to do (morehess) writing.

III.A.4 Statement numbers identify FORTRAN statements to which control
statements must refer, but a r e not needed on other FORTRAN state-
ments. This is why we read in Section II.A.41 that only a small per-
centage of statements need numbers. (Actually, a s will be seen later
under the I F statement, sometimes the IF statement may send the
computer to another statement merely by i t s position relative to the
control statement without referring to the statement identification; but,
otherwise, statements to which the computer is referred must be
labelled by a statement number .)

When a control statement refers to another statement, that statement
must be labelled with a

Answer: less

Answer: statement number

I.U.A.5 In the following example, repeated from Section II .A.44, some
statements carry statement numbers in columns 1-5, and one is
unnumbered.

FORTRAN CODING FORM

s T m Z G F - 1

You would expect to find a control statement o r statements elsewhere
in this same program referring to which of these statements: 600,
99, unnumbered, o r 4 ?

I£ you later, after writing the statements in m . A . 5 above, wished to
have a subsequent control statement refer to the third (unnumbered)
statement in the example, you could label this one also, with any
statement number not already used in the program. True o r false ?

Answer: 600, 99, a n r 4

Answer: True

Continue witn section m.B at this time.

111. B GO TO Statements

II1,B.I The first control statement we shall study is the GO TO statement.
The GO TO statement does exactly what its name implies. It tells
the computer gc& to execute the next statement in the normal sequence,
but rather to "go to" some numbered executable statement elsewhere
and continue executing statements in the normal manner from there.

In the example : GO TO 50
30 1 = 1
50 1 = 2

what is the statement that will be executed next after
"GO TO 5011?

III.B,2 You have seen executable statements before. The arithmetic state-
ments a re a good example, such a s A = B + 6, because this causes the
computer to do, o r execute, something. An executable statement can-
not be one that merely defines, such a s DIMENSION and the type state-
ments you used in Section 11, and the COMMON statement you will learn
about later.

I = 2 is an executable statement. True o r false ?

Answer: I = 2

Answer: True

IE.B.3 Which of the following sample statements could have control
transferred to i t by a statement "GO TO 50'' ? Why?

1,) 50 A = B + C
2 .) 50 DIMENSION A(4)
3.1 A(4) = (24.0302, .234)
4.) 50 LOGICAL
5.) 50 A = A.AND.B

Answer:

1.) OK
2 ,) DIMENSION statement
3.) statement is not numbem'ed
4 .) type declaraBon
5 .) OK

HlI.B.4
I

The simplest form of the GO TO statement is called the unconditional
w
XI

GO TO which has a s an operand a statement number to which control -9
N
I should be transferred next. For example, the statement "GO TO 100"

will cause statement 100 to be executed next.

What is value of X a s computed by the following statements ? Ansvver: X = 1.0

T- C for Comment
FORTRAN COBHNG FORM

-I

FORTRAN STATEMENT
50.

If your answer is correct, skip to W.B.6

m.B. 5 The example above would be executed by the compukr as follows:
Statement 50 would be performed f i rs t , setting variable A to 3.0.
Next, statement number 633 would se t X equal to 1.0. The next
statement, GO TO 100, tells the computer to execute statement
100 rather than statement 14. Statement 14 is not executed a t this
time. Notice that a t the completion of executing statement 100, X
has not been changed from i ts original value of 1.0.

If the "GO TO 100" statement has not intervened, statement number
14 would have been executed, and the new value of X would be Answer: X+A o r 4.0

III.B.6 The GO TO statement in the example above is called an unconditional
GO TO because it does not give the program any option.

The computer unconditionally executes the statement explicitly named
in the GO TO statement. True o r false ?

ID.B.7 However, if the programmer wishes a GO TO statement that provides a
choice of statements to which to branch, he may use two other kinds of
GO TO statements. These a re called the assigned GO TO statement and
the computed GO TO statement. The next few sections will describe their
differences in format and meaning.

Answer: True

The two kinds of GO TO statements that allow the programmer a choice
of where to branch a re called the GO TO and the
GO TO. Answer: assigned, computed

In the assigned GO TO statement, the programmer assigns
a statement number to a control variable and then uses the
control variable in the GO TO statement. In the example
below, the assigned GO TO statement wou3.d cause transfer
to statement 359.

N

? A-- C for Comment FORTRAN CODING FORM
I

FORTRAN STATEMENT
7

If the programmer wished to transfer control to statement 25, he
wodd write the f i rs t line above as:

1n,%.9 An alternate way of using the assigned GO TO statement is to
follow the control variable with a comma, then by a pair of paren-
theses enclosing a Kt of statement numbers separated by commas.
This l ist includes a t h e statement numbers which the programmer
assigns to the control variable within the program.

Answer: ASSIGN 25 TO INDEX

The following example illustrates this form.

III.B.9
(Cont.)

FORTRAN CODING FORM

In this example, where the second line "GO TO INDEX", is followed
by a parenthetical list of statement numbers, a comma after the
INDEX may be used. True o r false ?

In a program, the ASSIGN statement may assign a new statement
number to the variable (such as INDEX) .as many times as the program-
mer desires, as long as the new statement number assigned is already
listed within the parentheses in the assigned GO TO statement. True o r
false ?

Answer: True

Answer: M e

III. B. 10 Notice that in the example in ID. B. 9 the variable INDEX is an
integer variable (the name starts with one of the letters I, J, K, L,
M , or N) . Remember that only an integer variable may be used with
the assigned GO TO statement.

Is the following statement valid?

ASSIGN 1127 TO COUNT

Would changing the name of the control variable COUNT above to
ICOUNT make it an acceptable integer variable?

III. B. 11 The only correct way to use the assigned GO TO statement is to use
the ASSIGN statement to put a statement number into the variable.
This tells the compiler to get the address in computer memory of the
statement number and to assign that address to your variable. Do not
t ry to give a variable the desired branching statement number in the
form of a computation for use with the assigned GO TO statement.

Which of these examples of the assigned GO TO statement i s incorrect?

1.) ASSIGN 1127 TO ICOUNT
GO TO ICOUNT

2.) ICOUNT = 1127
GO TO ICOUNT

Answer: No. The control
variable must be
in integer mode.

Answer: Yes

Answer: 2 .)

111. B. 12 The computed GO TO differs from the assigned GO TO in that
it relies on the value of an integer variable to select the proper
statement number from a list of statement numbers enclosed in
parentheses. The form of the computed GO TO is as follows:

GO TO (20, 30, loo), INDEX

EI. B. 13 In the computed GO TO, the integer variable must be non-zero,
and no larger than the number of statement numbers in the list.
The value of this variable is se t by the program by ordinary
arithmetic statements and is used a s a counter for selecting a
statement number according to its order in the parenthetical
list--first, second, third, etc.

If N = 3, what will be the next statement to be executed?

If N = 1, what will be the next statement to be executed?

Answer: 10, the third
statement number
within the parentheses

Answer: 20, the f i r s t number

hll. B. 14 In the following example, notice that the value of the variable N
is preset, o r initialized, in the f i r s t statement, N = 6. Then
later this value is computed, reducing i t , or decrementing i t , by
one, each time statement 30 is executed.

FORTRAN CODING FORM

In the coding above, the value of N is not assigned but Answer: computed

In the preceding example, you were using a simple kind of loop,
in which the various statements listed in the GO TO statement,
af ter performing some operation, send the program back to state-
ment 30 and to the line that follows it:

these in turn re turn control to the GO TO statement, where the
newly computed value of N selects another statement number out
of the list. This looping will continue, statement by statement,
until some exit is provided. In this case , when statement 10 is
reached, it simply does not re turn the program to statement 30,
but mere ly drops down to the next sequential statement written
below 10.

Refer to the sample coding in 111. B. 14, and answer the following
questions:

1 .) Starting at the beginning, where N = 6, the GO TO statement
will send the program next to what s tatement?

2.) After statement 37 is executed, the value of A is 7

and the next statement to be executed will be

3.) After statement 30 is executed, the value of N is

4.) The next statement af ter 30 is executed re turns control to
statement 15, where N now has a value of , and
selects Gtatement to be executed next.

Answer: 37, the sixth number
in the l is t within the
parentheses.

Answer: B*C
30

Answer: 5 , o r 6 minus 1

Answer: 5
4, f i e fifth statement

rlO[. Bl. 15 5.) After statement 4 is executed, the value of A is 7

(Cont.) and the next statement to be executed will be

6.) After statement 30 is executed this time, the value of N is

7.) Again, the next statement after 30 returns control to statement
15, where again, N has a new value of , and selects
statement to be executed next.

III. R. 16 There is no limit to how many statement numbers a computed GO TO
may have, and the numbers may appear more than once. Care should
be taken to ensure that the control variable i s greater than zero and
not larger than the number of statement numbers within the parentheses.

For the following statement, what is the maximum value for LIRIIT?

GO TO (23, 100, 120, 23, 456, 89), LIMIT

If LIMIT were given a value of zero, control would &transfer to any
of the listed statement numbers. True or false?

If LIMIT were given a value of 7 , control would not transfer to 5ny of
the listed statement numbers. True o r false?

Answer: B/C
GO TO 30

Answer: 4, or 5 minus 1

Answer: 4
100 (the fourth
statement)

Answer: 6

Answer: True

Answer: True

111. B. 1 7 The only valid use of the computed GO TO statement is when the
control variable's value is defined by a mathematical operation (either
being calculated o r s e t equal to a value). Using the ASSIGN statement
will resu l t in erroneous operations.

Classify the following statements a s either unconditional, assigned, o r
computed GO TO statements.

3 .) GO TO KOUNT, (44, 27, 287')

4.) GO TO (122, 547, 7, 945, 46), JSWITCH

111. B. 1 8 Work exercise III. B in your workbook a t this time.

Answer: 1.) assigned
2.) unconditional
3.) assigned
4 .) cqmputed

S e c
d
"

+ 2

3
:

E+
cd
"

5 2
k

Q

)
"

5

k
k

0

-@

al
$ -2
4

cd
$

IH

k

Q
)

g 53
5

rn
Q

.2
$

w

L
4

;
 2

2
s

rd
3

0"
0
,
:

CG
*

c'e A
S

4

2
%
 2

'c; " g
,
 *

e
l

 g
.-

K
.

I

Q
)

Q
r

d
N

4

,g

=
'
&
G

.s m
,,o

-
0

3
,

4
2

:

%
F
-

c
d

.

3

al

5

k

0

0

6
,

-

6
,

a

a

m

22
P

d

d

cd
rn
cd
C

a

2

0

sd "

++
-@

$
v
-i
c
d
"

3
 3

2
 2
t3

6

You have learned that a logical variable has the following
characteristics:

(1) It must be declared LOGICAL in a type statement.

(2) It can be subscripted like other variables.

(3) Its value must be set to true or false by the program,
either by making it equal to one of the logical constants
(as shown in 11. E. 14), or by other operations.

A logical variable must be declared LOGICAL in a
statement.

Answer: type

A logical variable can be like other variables. Answer: subscripted

The value of the bits in a logical variable must be set to true
or false by the

Now we will see two other kinds of logical expressions;
relational expressions, and the logical result of performing
a logical operation on logical expressions. Although these two
kinds of logical expressions look more involved, they still meet
the basic requirement of having final values of either true or
fake.

All logical expressions, of whatever type, must have values
of either or

Answer: program

Answer: true,
false

3 S
 m
 [I]

3 5

0

d
,

4

cd
a xr k

0

9 5 [I]
rn

2 f
i

I4

F9
0

d
-,

,--I
cd

Q
)

m
.r

(

C

E! .a

m m Q.' B a, ?
-
i

cd

53 .a
T

I

9
 3

a,
k

3 w

.", X
 k

B
W

0

m

4 3 g;
E

cd

Complete the logical operator for each definition:

Equal to -
Not equal to

Greater than -
Greater tban
o r equal to -
Less than -
Less than or
equal to -

Answer: . EQ.

. NE.

. GT.

. GE.

. LE.

In . C. 8 In the example A . EQ. B, the relation of A to B is evaluated by
asking the question: does A minus B equal zero? If A and B

I
CL

have the same arithmetic value, then the relational expression
W
oa A . EQ. B is true, and the value of the relational expression

I would be true, or nonzero. However, if A should be greater
or less than B, then A . EQ. B would be false, and have a
value of zero.

Notice that the variables A and B above must not be logical
variables, but arithmetical, that i s , they must be integer,
rea l , double precision, or complex variables. Whenever any
relational expression contains more than one type of arith-
metic variable, the entire expression i s converted internally
according to the rules of mixed-mode arithmetic you learned
in Section rl[. C.

In the example I . ET. D, where I is an integer variable and
D is a double-precision variable (which you learned in
Section II i s floating point), the value of I would be converted
to a fIoating point quantity by the computer, and the resulting
two floating point values wouId be compared, using only the
most significant half (the single-precision p a r t) of D i n t h e
comparison. True or false? Answer: True

III. C. 9 Indicate the value, true or false, of the following relational
expressions, where K = 4 and B = 4.0.

value

value

value

B. GE. K value

B.LT.K value

B. LE.K value

In[. C. 10 Now the fourth'and last type of logical expression, which of
course still has a resultant value of true or false, is what
we call the logical result of performing a logical operation
on logical expressions.

The logical expressions on which the logical operations a re to
be performed can be any of the three kinds we have already
learned about: logical constants, logical variables, or
relational expressions.

A logical expression can be a logical constant, a logical variable,
a relational expression, or the result of a logical operation on any
of these. True or false ?

Answer: True

False

False

True

False

True

Answer: True

111. G. II The logical operators to be used with these logical expressions
a r e the three you used in Section II. I?. However, in the present

I
I-'

case you a r e not allowed to use arithmetic constants o r
W
CD

arithmetic variables, but only logical expressions with the
operators. A s you remember, the operators have the following
meanings :

.AND. This tests two expressions to see if they a r e - both
true. The result is true if both a r e true, but -
i s false if either one is false.

. OR. This tests two expressions to see if either one
o r the other is true. The result is t rue if
either one is true, but false only if
both expressions compared a r e false.

.NOT. Indicates negation. This is true if the - one
value i t tests is not true (value of zero), but
the .NOT, operator results in a value of
false if the expression tested has a value of
true. In other words, the resulting value of the
. NOT. operator is just the opposite of the value
of the expression.

c
)

o
a
,

0
%

:3

.. k

-139-

An allowable con~bi~aation of these logical operators is .NOT.
combined with (and followhg) .AND. o r .OR. , such as in
A .AND. .NOT, B, and A .OR. .NOT. B, in which cases
the .NOT. is evaluated f i r s t , then the other operator is
evaluated. These could also be written A .AND. (.NOT. B)
and A .OR. (.NOT. B).

F o r example, A .AND. .NOT. B would be t rue (have bi ts s e t to
a l i ones) only if A is t rue and B is false, o r , in other words, A
is t rue and B is not t rue.

.NOT. can be used with itself only in the form . NOT. (. NOT. A),
o r .NOT. (. NOT. (. NOT. A)), in which the value would be cal-
culated f i r s t with the innermost parentheses, etc . F o r instance,
if A in the above has value t rue , then the innermost expression
(.NOT. A) has value false: the next .NOT. r eve r ses the value
to t rue , and the outermost .NOT. again r eve r ses the value to
false. A s mentioned in DI. C - 6 , an outer pair of parentheses
around the ent ire expression is always permitted, but does
not change the meaning.

F r o m the foregoing, figure out the values of the following
logical expressions:

If A is t rue and B is true, then (A . AND. .NOT. B) has value

If A is t rue and B is t rue , then (A . OR. . NOT. B) has value

If A is true and B is false, then (A .AND. .NOT. B) has value

If A is t rue and B is false, then (A . OR. .NOT. B) has value

If A is false and B is false, then (A .OR. .NOT. B) has value

If A is t rue , then (.NOT. (.NOT. A))I has v a l ~ ~ e

If A is t rue , then (.NOT. (.NOT. (.NOT. A))) has value

Answer: False

T rue

T r u e

True

True

True

False

m. C. 14 We have seen in the preceding sections how the logical operators
. Ah'D . or . OR. and . NOT. can perform logical operations on
logical expressions. We have seen that a logical expression
can be any of the follon,ing: logical constants, logical variables,
relational expressions, and last of all the logical result of per-
forming a logical operation on any logical expression.

In all cases, the logical expression operated on had a value of true
o r false, and the resulting value after using the IogicaI operators
had a value of or Answer: true, false

IK c .15 The next, and obvious, step would be to use any desired kind of
logical expression with one of the logical operators (. AND. or . OR.
o r . NOT.) , In the form

(logical expression) . AND, (logical expression)

we could substitute any logical expression that we have been writing:

1 .) A, B, G , K . etc. , if the variable has been declared LOGICAL
in a type statement.

3 .) A .EQ. B-D I .NE. K(N) (Remember, in relational
A .GT. 16.0 I . NE. 7-K expressions, the operands--variables
K . LT. 16 INDEX(N) .LT. 10 o r constants--are mathematical, not
R(r) .GE. R(1-1) SUM . EQ. PARAM logical; only the result is logical.)
3.0*X+6.0 . LE. D-E ISUM . EQ. IPARAM

Considering the definitions above, which of the following is not
a valid logical expression? (Assume that none of the variables
are logical.)

I.) A .EQ. B-D

2 .) A = B-D

3.) PAY . EQ. TIME * RATE

4.) I . LT. 2

5 .) I .LT. 2 . 6

6 .) A . EQ. . FALSE.

Answer: Not valid:
2 .) A = B-D
6.) A .EQ. .FALSE.

EI. 6.17 If you answered correctly the question above, skip to III. C. 19.
If not, let's look a t each of the above examples, remembering
the definitions.

1.) A . EQ. B-D is a valid relational expression, using a valid
relational operator and arithmetic rea l variables.

2 .) A = B-D is not a valid relational expression because the =
sign is not a valid relational operator. This expression
does not have a resulting value of false (zero) or true (all ones),
but rather is an arithmetic replacement, replacing the value
in A with another value that is the difference of B-D.

3.) PAY . EQ. TIME * RATE is valid, using a valid relational
operator, and arithmetic rea l variables.

4.) I . LT. 2 is valid, using arithmetic integer variable and constant.

5 .) I . LT. 2.6 is valid, using arithmetic expressions, I being an
integer variable and 2.6 a real constant.

6.) A . EQ. . FAME. is not a valid relational expression, because
both operands a r e not arithmetic expressions, since . FALSE.
is a logical constant. (Please review Section 11. E. 14, where A
and K a r e declared logical variables, and then K = . FALSE.)

7.) I . EQ. .31415EOL is valid, using an integer variable and a real
constant.

8.) I . GT . -3.1415E+Ol is valid, using an integer variable and a
rea l constant.

9.) I . LT. 31415927D0 is valid, using an integer variable and a double
precision constant.

10.) I . EQ. (15. , 16.7) is valid, using an integer variable and a complex
constant. The comparison will take place between the variable and
the real part of the complex constant.

EI* D IF Statements

The IF sbtement is a versatile control statement that can both
test a value and then direct the computer to choose one of various -
courses of action, as determined by the value tested. In other words,
the IF statement can cause the computer to branch to some other
statement instead of executing the next sequential statement.

The IF statement can cause the compukr to skip the
, and to some other statement.

You have already seen how the programmer can use the GO TO state-
ment for branching. Now you will see how the IF statement determines
branching by testing arithmetic or logical expressions for some value.

The IF statement tests the values of or
expressions to determine branching.

Answer: next sequential
sbtement, branch

Answer : arithmetic or logical

To review briefly these expressions that c m be tested by the TF state-
ment, and how they get their values, f i l l in the blanks in these lists:

1) The IF sbkmen t can test arithmetic expressions, which,
as you recall, a re those that express one or more of the
five basic arithmetic operations:

Answer: exponentiation
multiplication
division
addition
subtraction

III. D. 3
(Cont.)

2) The IF statement can be written another way to test
logical expressions, which you remember a r e those that
always have a value of either true or false. The four
types of logical expressions tested by the IF statement
get their true or false values as follows (you fill in the blanks):

a) The two logical constants have a value of zero or non-zero
and are named . . and .

b) The logical variable must be declared in a
statement, and may be subscripted like other variables.
It i s given a or value by

1. Setting it equal to one of the constants,
or by

2. Giving it the value of a logical or
relational expression, or by

3. Setting it equal to the or
value of an arithmetic expression.

c) Relational expressions compare expressions
by means of the logical operators . EQ. , .NE. , . GT.,

, . LT. and

d) Other logical expressions a re those expressions whose
value is the logical result of performing a
operation on logical expressions.

Answer: . FP,ME.
. TRUE.

Answer : type
true, false

Answer : logical

Answer: logical

Answer: zero
non-zero

Answer: arithmetic
, GE.
. LE.

Answer: logical

DI. D. 4 Now let us see how the IF statement tests these expressions to
determine branching, and how the IF statement can utilize the
GO TO statement to give it greater flexibility.

m. D. 5 When the programmer uses the IF statement, the computer is
told in one statement what to test, what values to test for, the -
choice of alternate statement numbers it may execute, and which
value will direct the computer to which statement number.

To test the value of a FORTRAN expression, either arithmetic or
logical, the programmer uses the- statement.

The same IF statement will both test the expression and tell the
computer which to execute next.

Answer: IF

Answer: statement

UI. D. 7 The Three-Branch AriLhmetic I F

I
I-'
ctr,
0

ITI. D. 8 The IF statement is very simple to use. The word IF is written
followed by an arithmetic control expression in parentheses and
then three statement numbers separated by commas.

Which of the following examples of three-branch arithmetic IF
statements are coded incorrectly?

Ihb.D.9 The IF statement causes the computer to evaluate the control
expression, and, if the expression is negative, the f i rs t of
three branch options is chosen. If the expression is equal to
zero, the second option is taken. The third option is chosen
for a positive value. N(-) is the statement number which will
be executed next if the expression's value is less than zero,
N(0) if it is equal to zero, and N(+) if it is greater than zero.

For X = 5. (3, which statement number will the computer branch
to after executing khe following IF statement?

If you wished to go to statement 300, you would have to se t the value of
X to

Answer: 1, 2, and 4

Answer: 200

Answer: X > 5.0

If your answers were correct , skip to m. D. 11.

ItI. D. 1 0 Since the f i rs t thing the computer does is to evaluate the control
expression, (X - 5.0) would be evaluated. For X = 5.0, this
result i s . The three statement numbers represent
the three options for branching. The f i rs t statement number (100)
is the branch for a value in the control expression, but
in our example the control expression (X - 5.0) equals zero, so the
computer branches to statement number

III. D.11 The control expression may be as simple or as complex as desired.
I t may be a variable that has previously been given a numerical value,
or it may be longer and contain its own sets of parentheses. I t must,
however, be completely contained within the I F statement parentheses.

The following a r e valid arithmetic IF statements:

I F ((X + Y)**3 / (Z + X/2.)**2) 300, 400, 500

True or false?

FhI.D.12 Notice the last I F statement in the above question. The statement
numbers for the zero and positive options a r e the same. This
means that statement number 200 will be executed if the control
expression is greater than o r equal to zero.

Write the IF statement which will branch to statement number 100
if (X + Y) is less than o r equal to zero and branch to 200 if (X + U)
is greater than zero.

Answer: zero

negative

200

Answer: True

Answer: IF(X + 13 100, 100, 200

III. D. 13 The IF statement i s valuable because it allows the computer to
operate in its most efficient mode, that is , in the performance of
repetitive operation. A simple example of this is to use the IF
.statement to control the number of repetitions in developing some
quantity.

F u might wish, for example, to do some calculations repeatedly
until the resultant value reaches some desired limit, regardless
of the number of loops (repetitions of the calculations). In this
case, the IF control expression must contain this calculated value,
such as:

GO TO 95

300 (program continues)

In the example above, the 'calculation that will be repeated is

If tbe resultant value of this calculation after each loop is v

the program goes next to statement 111, where the value of X i~
increased by

y The IF statement will send the computer to statement 300 when the
result of X*Y is or

Answer: X * Y

Answer : negative

1.0

Answer: zero or greater

III. D. 14 Another kind of repetitive operation with the arithmetic IF uses a
different control variable that is not the resu l t of your calculations.
Suppose that you wish to repeat the calculations a specified number
of t imes , regardless of the final value. In this ca se , you will use
a counter for loop control, which will be incremented (or decremented
if you wish) each time the loop is repeated until the counter, when
tested, shows that you have completed the desired number of loops.
In this case , the counter will be the IF control expression, as in this
example where I is the counter:

DIMENSION A(3)

30 (program continues)

In the example here , when statement 25 has been executed the f i r s t
t ime, the value of (I) is , and the value of the control expression
(I - 3) is . This will cause the computer to go to statement

After s ta tement25 has been executed the third t ime, I = , and the
value of the control expression I - 3 will be , which will cause the
computer to go to statement .

Answer: 1
-2 , 20

Answer: 3
0
30

Suppose you wish to use the three-branch arithmetic IF statement
to tell the computer to add up the first 100 numbers out of a large
array of real numbers, and to accumulate the total in a variable
named SUM. Then, after this is done, you wish the computer to
go on with the rest of the program.

Look at the following example:

C for Comment FORTRAN CODING FORM
,I 1
!State- 14
I n e n t h ~ 3 6: l7

FmTRAN STATEMENT 1
5D4

In this problem, XNMBERS is the source array from which the computer
will get number a t a time for adding in SUM. Now your
counter (control variable) I will do double duty: a t the beginning of the
first loop, I = , - and since I tells the computer to get the number from
the "IthW location in the array XNMBERS(I), the computer will now get the

number from the array. Likewise, during the fourth loop, the
number will be added, and during the hundredth loop the

- . - - - - - number will be added.

Answer: one

fir st
fourth

hundredth

PII. D. 16 Still referr ing to the example in III. D. 15 , notice that a t the beginning,
SUM was initialized to 0 .0 before you star ted adding numbers to it.
Then the control variable I was "initia1ized1l to 1. This ensures that
when statement 20 is executed for the f i r s t t ime, SUM is set to the
value of plus the value of the number in
XNMBERS .

During the 50th execution of statement 20, SUM (containing the
numbers) has the accumulated total of the f i r s t t h

number added to i t , rais ing the SUM to the new accumulated total.

During the execution of the loop for the 99th t ime, the control variable
will have the value of , and statement 20 will add the th
value into SUM.

Then after statement 20 adds the 99th value into SUM, statement 30
increments the control variable f rom 99 to

Next the computer is sent back to statement 10 , the IF statement, to
s t a r t the 100th loop. Now the value of the control expression (I - 100) -
is , so the computer is directed to statement , where the

th number is added to SUM.

Notice that now, af ter the 100th number is added to SUM, the computer
again increments the control variable I , s o that it now equals 101.
But, the 100 desired numbers have already been totalled in SUM, s o you
wish to get out of the loop and go to the rest of the program. Will you?
Yes o r no?

Follow the coding. You next go back to statement 10, the IF state-
ment, where now I - 100 has the value of , s o the computer will
branch to statement . Does this take you out of the loop?

Answer: zero
f i r s t

Answer: 49
5 0

Answer: 99
9 9

Answer: 100

Answer: 0, 20
100

Answer: yes

Answer: +1
40, y e s

nI.D.18 The sequence of statements in the two examples in III.D.17, repeated
here for convenience, differs as shown here:

Example 1

I =oL
L

I , I I 1 , I ! I I I 1 Initialize counter to o
I

i(J . L d ~ ~ a ~ I 1 l I I I , I , , ! I I I :Increment counter by 1

Tji 11 - 1 1 1 0 1) , 1 , 0 1 , 1 0 1 ,14101 ,-
L . ,

Test the counter **

Example 2

I a ! Initialize counter to 1

f I Tes t the counter ***
1 (Iny pyithmptiy yompyt$tl;oy) , , the problem

I = I , + , , , 1 I , 1 I I I ~ncrernent counter b y 1

~ 1 1 1 I 'GO 1 1 1 1 T O I " I 3 0 l i l l l l l l l L

4 0 L[(program continues)
II- ~ I I . ' l l 1 I I I I I I I l ~ I I

If (1-100) is negative, continue the loop, go to 10. *If (1-100) is negative or 0, coi~tinue the loop, go to 20. I
r
~n If (1-100) is 0 or positive, exit from loop, go to 40. If (1-100) is positive, exit from loop, go to 40.
4
I

Look again at the two examples in III. D. 17 and 18 and answer
these questions :

1) Suppose that statement 20 (the processing step in each
example) has just been performed for the first time,
with the counter I se t to the value of 1. In each example,
follow what happens after statement 20: the very next
time the IF statement tests the counter, in Example 1 , - -
I = , but in Example 2, I = Answer: 1 , 2

Dl. D. 18
(Cont.)

2) Continuing this line of reasoning, suppose that the
processing (computation) has just been performed
for the 100th time (with I = 100): the very next time
the IF statement tests the counter, in Example 1 ,
I = , therefore, the control expression I - 100
has the value of

- 9
which causes the computer to

branch to statement , which in turn (does?/does not?)
lead to processing another time.

In the same situation, in Example 2, after statement 20
has processed for the 100th time, with I = 100, the very
next time the IF statement tests the counter, I = ,
therefore, I - 100 has the value of , which causes
the computer to branch to statement , which (does ?/
does not?) lead to processing another time.

ID. D. 19 The two different situations in the examples just described reveal that,
if you test the control variable after you increment it, you must write
the branch statement options in the IF statement so that you exit from
the loop when your control variable value is

zero.

However, if you test the control variable before you increment it, you
must write the branch statement options in the IF statement so that you
exit from the loop when your control variable value is

zero.

Answer: 100
0
40, does not

Answer: 101
+1
4 0
does not

Answer: equal to or greater
than

Answer: greater than

Notice that in the examples we have studied of the IF statement,
the result from the evaluation of the control variable was not saved.
However, if the programmer later needs the value of the expression,
he will have to write a separate statement setting the expression equal
to a variable. In the example in 111. D. 9, if the programmer needed the
result of the control expression (X - 5.0) for some other calculation, he
would write

Y = X -5.0

IF (Y) 100, 200, 300

Then he could later refer to Y in other statements, because he would
have saved the value of X - 5.0 in it.

III. D. 21 The Two-Branch Logical I F

III. D. 22 Both logical IF statements test logical expressions, which, a s
you recall, has only two possible values, true or false. One of
these I F statements, the two-branch logical IF, works the same
a s the three-branch arithmetic IF except that the word IF is
followed by a logical expression in parentheses, and there a r e
only two branching options following the logical control expression.

The first option is chosen if the expression is true, the second if
the expression is false.

For X = 3.0 and Y = 4.0, which option will be chosen by the following
logical I F statement?

If your answer is correct, skip to ID[. D. 24.

In the two-branch logical IF , a s in the arithmetic IF, the action the
computer takes depends on the result of the control expression. In
the above case X is compared to Y. If X>Y, the state of the expression
will be true and the first option, statement number 100, will be chosen.
But we see that for X = 3.0 and Y = 4.0, X is not greater than Y; there-
fore, the expression is false and the second option, statement number 200,
is chosen.

Answer: 200

ITI. D. 24 The One-Branch Logical IF

In. D. 25 The second type of logical IF, the one-branch logical IF statement,
works differently from the other IF statements. Instead of giving a
choice of statement numbers, for branching, one optional statement
itself is written on the same line, immediately following the con-
trol expression. This statement following the control expression
may be any executable FORTRAN expression, which the computer
will or will not execute, depending on the control expression.
(However, this executable expression should not be another logical
IF statement.)

Examples of one-branch logical IF statements:

IF (2C.GT.Y) AREA = Q * R ** 2

Which of these examples is &a valid one-branch logical IF
statement?

a.) IF (A.EQ.B) GO TO 200

b.) I F (A = B) GO TO 200

e.) IF (A.NE.B) IF (A.GT.B) GO TO 50 Answer: b and c

m. D. 26 When the computer encounters a one-branch logical I F statement,
it evaluates the control expression first. Next, if the control expression
is true, the optional statement is executed. After execution of the
optional statement, if that statement does not cause a branch to another
part of the program, the next statement after the logical IF is executed.
However, if the control statement is false, the entire logical IF state-
ment is treated a s though it is not there. It is disregarded and the next
sequential statement after the logical IF is executed.

III. D. 27 For example, in the following coding, suppose the computer evaluates
the control expression.

I F (X. EQ. 0.0) Y = 100.0

If X has the value of 0.0, the expression (X. EQ. 0.0) is true ; therefore,
the computer would next perform two operations:

1.) Y would be se t equal to 100.

2.) Then the computer would go to the next sequential statement,
which would cause the program to branch to statement 300.

However, if X had some non-zero value (not equal to zero), making the
control expression false, the computer would next perform two operations:

1 .) The computer would ignore the instructions to se t Y equal to
100.0.

2.) As above, the computer should then go to the next sequential
statement, which would cause a branch to statement 300.

III. D. 28 In these examples of the one-branch logical IF statement, suppose
you "play computer" and evaluate the control expression; then
indicate which statement you will execute next (either the statement
in the right end of the IF statement, or the statement on the next
line).

a.) Let X have value of 2.0

k.) LetX have value of 0 .0

IF (X. LT. 0.0) A = B-X
GO TO 300

c.) Let X have value of -1.0; give branching options for
each IF statement:

30 IF (X. EQ. 0.0) GO TO 200
GO T O 100

100 I F (X.GT.0.0) GO TO 300
GO T O 400

400 XNEG = X
GO TO 50

200 OMEGA = X
GO TO 50

300 XPOS = X
5 0 (program continues)

Answer: Y = 5.0

Answer: GO TO 300

Answers:
For statement 30: GO TO 100

For statement 100: GO TO 400

EI. D. 29 The one-branch logical IF statement allows the programmer to
"slip inn an extra statement when conditions call for it.

Write the FORTRAN statements, using the one-branch logical
IF for the following:

When the logical variables A and B are both true, add one
3

to the variable f , then calculate P = X . Otherwise,
calculate Y = X only.

Answer: IF (A. AND. B)X=X+l . 0
Y = X * * 3

III. D. 30 Work exercise 1II.D in your workbook at this time.

111. E The DO Statement

la. E. 1 It was mentioned earlier that the computer becomes a more efficient
device when it works in a repetitive mode. Because of this, program-
mers take great pains to use repetitive loops as often as possible (within
reason) in their programs. You have used IF statements to execute
repetitive loops, and will now see a more powerful tool for this, the DO
statement. All repetitive loops have certain properties in common:

1. There is an initial value for the variable that governs
the number of repetitions.

2. The variable is incremented by some amount after each
repetition.

3 . The program provides a means of testing the variable to
determine whether to repeat the loop or to exit from the
loop.

ID. E. 2 It i s not surprising then to learn that a FORTRAN control statement
exists which automatically controls the above three properties of
repetitive loops. This statement i s the DO statement. With one DO
statement, the programmer defines a variable, gives it an initial
value, sets the upper limit on the value of the variable, defines the
value of the increment and determines the set of statements to be
repeated.

A section of code may be repeated several times by use of a DO
statement. True or false? Answer: True

ID. E. 3 The DO statement provides a simple way to make calculations that
a re quite complicated when done with individual instructions.

The DO statement does several things simply and automatically.
True or false?

HI. E.4 The format of the DO statement i s the word "DO" followed by the
termir is statement number and then an integer variable, called the
index variable, whose value will be initialized, incremented and
tested with each repetition. The integer variable i s followed by an
equal sign and then three integers called the loop parameters which
represent the initial value, final value, and the increment to be given
to the index variable.

Answer: True

The three values following the integer variable a re the loop Answer: parameters

HI, E. 5 For example: 5 0 0 D O 1 0 0 I = l , 21, 2

The above DO statement will be interpreted by the computer to execute
the statements from 500 through 100, with the variable I initially equal
to 1 , repeating this series of statements as many times as necessary
until I > 21, with I being increased by 2 each time statement 100 is
reached.

Now many values will I assume during execution of the above loop
eontrolled by DO statement 500? Answer: 11

171. E. 6 In the above example, I is initially s e t equal to 1. When statement
100 is reached, the increment 2 is added to I. If I is grea ter than
21, the next statement in sequence is executed. If not, the program
returns to the statement following 500. When statement 100 is again
reached, the process is repeated until I is grea ter than 21. Thus, I
will assume the values 1 , 3, 5 . . . 19 , 21 during execution of the
loop. When I reaches 23, the statement following 100 is executed.

m. E. 7 The section of the program which is going to be repeated under
control of the DO statement is called the DO loop. The last statement
in the loop is assigned a statement number. The DO loop contains the
DO statement, the ending statement, and a l l the statements in between.

The following example of a simple DQ loop has an ar row showing the
loop structure:

SUM=O. 0
DO100 I=l , 21, 2
A(I)=B(Q-CO+DO
E(I)=F(I)*12. 0
G(Q=A(I)+E(I)
SUM =SUM +G(I)

100 CONTINUE
(program continues)

The CONTINUE statement will be discussed later.

In the following example, an ar row s imi lar to the one above would
point to statement Answer: 20

DO 20 ICOUNT = 2, 16, 1
A = B**2*D
ARRAY (ICOUNT) =-A

20 CONTINUE

The index variable is restricted to a simple integer variable. The
initial value, maximum value, and increment to be given to the index
variable may be either integer constants or simple integer variables.
If they a re constants, they must be positive and non-zero. If variables
a re used, they may assume positive, negative, or zero values. However,
zero or negative index variables can generate many errors , and should
be avoided. On computed variables, tests should be made to prohibit
zero or negative variables from being used.

Detect the errors in the following DO statements:

III. E. 9 If the incrementing value (third parameter) is 1, this parameter
may be omitted and 1 will be assumed. The following statements
are equivalent.

Are these statements equivalent?

Answer:

a. Index variable must be an
integer variable.

b. A zero constant is not allowed
as one of the loop parameters.

c. The loop parameters must not
be real variables.

d. Although integer variables are
allowed, integer expressions
a re not.

Answer: No. If the third para-
meter is omitted, it is
assumed to be 1.

The DO loop terminates when the incremented value of the index
variable is greater than the value given by the maximum value loop
parameter. If the initial value of an index variable is greater than
the maximum value, the loop will be performed once and then
terminated.

The following DO statements represent the beginning of three
different loops. How many passes will occur through each loop?

a . DO 100 INDEX = 1, 16, 2

b. DO 200 LINK = 5, 4

c. DO 300 KAT = 2, 20, 1 8

Because the loop parameters may be integer variables, the programmer
can construct loops whose number of repetitions can be changed outside
the loop by computations. You will s*e a very effective use of this char-
acteristic when you study nested DO loops later in this section. (The
loop parameters may also be changed during the execution of the loop,
but it i s not good practice to do so and avoidance of the procedure i s
encouraged.)

Can the loop parameters in this example be changed by outside
computations ?

Answer: a. 8

b. 1

c. 2

Answer: No, because to be
changed, they must be variables,
not constants a s these are.

111. E. 1 2 Let's look again at the reference in the DO statement to the ending
statement, such as statement 95 in the following:

SUM = 0
50 DO 95 I=l, 20

INDEX(I) = E
95 SUM = SUM + INDEX(I)

100 (program continues)

Notice that statement 95, the ending statement, is an executable
statement, an arithmetic computation. This is a valid terminal
statement for a DO loop.

However, there a re some restrictions on what kind of statement may
be used to end a DO loop. In general, it must be an executable
statement, so this rules out all the non-executable statements you
have already studied, plus COMMON and FORMAT that you will see
later.

The end statement in a DO statement must not be a FORMAT
statement, DIMENSION statement, C O ~ ~ O N s t a t e m e n t , or type
declaration. True or false ?

The ending statement in a DO statement must always have its own
statement number. True or false?

Answer: True

Answer: True

III. E. 14
(C ont .)

3 .) The last statement of a DO loop may be a logical IF
statement. However, the beginning programmer should
be careful in using the logical IF a s the ending statement.
The one-branch logical I F may change the desired flow of
the program, as will be evident in later examples of DO
loops. This can have a disastrous effect if nested DO loops
end with the same terminal statement. To be "safe rather
than sor ry " , end each DO loop with a CONTINUE statement,
which may be preceded by either an arithmetic IF o r a logical
I F statement.

Which of these statements would be allowed as a valid last statement in a
DO loop?

1.) X = X*(-1.0)
2.) CONTINUE
3 .) 60 TO 100
4.) I S U M = E S r n + J

EEH. E. 15 To avoid ending a DO loop with a forbidden statement, FORTRAN provides
the CONTINUE statement. This statement is a do-nothing instruction,
which causes no operation, but is always a valid ending statement for a
DO loop. I t is also useful in that it makes the ends of DO loops easy to
find on program listings.

The CONTINUE statement is a - instruction.

Answer: 1, 2 , 4

Answer: do-nothing

111. E. 16 Since the end statement of a DO loop must be indicated in the DO
statement, every CONTINUE statement must be assigned a state-
ment number.

A CONTINUE statement a t the end of a DO loop does not require
a statement number. True or false ?

III. E. 1 7 CONTINUE statements may appear at any place in the program. When
not ending DO loops, they must still be assigned statement numbers,
but they merely pass control to the next sequential instruction.

CONTINUE statements provide statement numbers for branching, but
cause no operations to be performed. True or false?

III. E. 18 A transfer to a CONTINUE which ends a DO loop is always permissible
from statements preceding the DO loop. A transfer to such a CONTINUE
from statements following the loop is permissible only if a reference was
made to the same CONTINUE in a statement preceding the DO loop.
Transfer to the CONTINUE may occur whenever required from within
the DO loop.

Suppose statement 200 is a CONTINUE statement which ends a DO loop.
Which of the following a r e valid?

1.) Transfer to statement 200 from an IF o r GO TO within
the DO loop.

2.) Transfer to statement 200 from a statement preceding the
DO loop.

Answer: False

Answer: True

Answer: 1.) and 2.)

3 .) Transfer to statement 200 from a statement which follows
statement 200, when no other reference to statement 200 has
been made outside the DO loop.

I
Ct
-a
A

TII. E. 19 To illustrate use of the CONTINUE statement, suppose we have a
I ser ies of 100 values of some function which have been stored

randomly in an a r ray called X. It is necessary to find the smallest
value of X and make it the f i rs t value of the array. (That i s , the
smallest X must be X(1) .) A program to search through the X
a r ray would be:

200 TEMP = X(1)

X(K) = TEMP

300 (program continues)

The DO loop i l lustrabd here s tar ts with statement and
ends with statement

Answer: 50
100

III. E. 20 The f i rs t time through the DO loop with K = 2, the I F statement
compares the f irst X in the a r ray with the second X. If the f i rs t
X is smaller or equal to the second X, the I F statement causes
a branch to statement number 100, which is a CONTINUE instruc-
tion. Because it is the last statement in the DO loop, the computer
would interpret the CONTINUE statement a s an instruction to incre-
ment the index variable and continue processing the DO loop. If the
f i rs t X is greater than the second, the I F statement branches to
statement number 200, where the X values a r e interchanged, thus
putting the smaller X in X(1). This method assures placement of
the smallest. X in X(l) when all the values in the X a r ray have been
compared.

Did you notice how another variable called TEMP was used to help
interchange numbers (without losing any of them) by putting them
into new locations in the same a r ray?

Suppose that in the preceding coding, the original value of X(1) a t
the s t a r t was 4 .0 , and at the same time the original value of X(K)
was 2.8, thus causing the program to go to statement 200.

"Play computerf1 by indicating the value of each variable before
and after the execution of these statements:

200 TEMP = X(1)

X(1) =X(K)

before after Answer:
m

TEMP

X(1)

.A 3

-+

3

O

,Z
c

E

3
2

E ~
3
8

2
3

 F
:G

w

*

a,,?.,

"
E

3

8
2
 3

C

,

acd
1

;
 E
p

s

a,
x
w
 a;

E
W

9
$

E 'd

O

H

&
3

3
 2

k

a
c

>
 a
,
%

2
3

'cg 2;
5

b-4

@

%
IZ

Q

g g
g

-
3

-4

o

o
.
I
?

a

1
4
 4

G

0
 0

 .TB
g

n
Q

3
*

a,

@
+

f
i-

,
%

-w

Q

L
S

$
~

Z

0

Q

F
:3

gas g

g
,

m

o
o

5a,*a,W

E

'-g

8
'd

 P
-'&

id

b.4
E

a

2.o.a
.d

2
!a

,%
0

F5
!
a
s
 5

U

a,

0

5

2
F:

Ci',..,
.
4

,

o

0

g
.*

s'B

E
E

O
~

0

2
!f=

'@

-
I
2
E
c
d
r
9

m

.*
2 B

2
k

."
8

2
3

%

3
0

2
a

B

Q
::z

I.2

0

a,

FrS-
h

E

D
r.2

a
.2

2

~
a

E
s

UJ

a
Z

.2
 a,

0

m
d

$

~
2

:
~

-" ig

x

'"o
g

a
,2

@

k

$

h

"
8

g
3

g

c
J

 k

3

"
;;.5

a
s

'

"
O

W

q
)

g
-'*
M
k

3
.9

$
%

E

S
fjZ

2

.$
p

r.2

@
%

:!3

fq
,

2 E
$,

k
8
2
2
c
d

2
.

a
~

d

s
d

S

Look at the following examples, and answer the questions.

Example 1

4 A(I) = MI) + B(I, J)
2 G O T 0 1

10 D O l I = l , 5
GO TO 4

1 CONTINUE
30 (program continues)

Example 2

K = O
IF (K) I* 10, 1

4 41) = Am + B(I, J)
2 G O T 0 1

10 D O l I = l , 5
6 GO TO 4
1 CONTINUE

30 (program continues)

1.) In Example 1 , after the computer first executes statement 4,
control will next be transferred to statement , then to state-
ment , and then to statement

Will statement 10, the DO statement, ever be executed?

2.) In Example 2, after the computer executes the f i rs t two state-
ments, what statement will it go to next?
After this statement i s executed, the next statement to be executed
wi~ l ' be .'
After this statement is executed, the next statements in turn to
be executed will be , , then

Will statement 10, the DO statement, be executed in this example?

Answer:

Answer: 10

6

4, 2, 1

Yes

III. E. 24 An example of the efficiency of the DO loop can be seen by reworking
a problem shown earlier, where we discussed how and when to
initialize and test the control variable in a loop using the arithmetic
IF.

(a) IF statement version: Jb) DO loop version:

5 1 = 0 8 DO 30 X = 1 , 100
10 I = l [+ l 2 0 (any arithmetic computation)
20 (any arithmetic computation) 30 CONTINUE
25 IF ('6-100) 10, 40, 40 40 (program continues)
40 (program continues)

Notice that, in example @p above, the statement DO 30 I = 1, 100
does all of the following, which required separate statements in
example (a):

1 .) Defines the counter variable I.

2.) Defines the amount of the increment for the variable I.

3.) Initializes the counter variable I.

4.) Defines the maximum value for the counter variable I.

Notice that in (a) above the sequence of execution was to initialize the
variable, increment it, process the computation, and then test the
variable. In @f above, this was done by the loop.

In both examples, whenever the program leaves the loop, it goes
next to statement 40. In example (a) the exit from the loop is when
the variable is (< , =, >) 100. In example (b) the exit is when
the variable is-(<, =, >) 100.

Answer: =
>

Ill. E. 24 When the programmer uses a DO loop, he (does, does not) have to
(Cont.1 decide in what sequence he should initialize, increment, and test

the control variable.

The one advantage the arithmetic I F loop has over the DO loop is
that the control variable may be other than a simple integer
variable. T rue o r false ?

III. E. 25 There a r e two ways for the program to leave a DO loop. A control
statement may cause a special exit (a branch to another par t of the
program outside the DO loop), o r the loop may be performed a
sufficient number of t imes s o that the loop parameters will be satis-
fied and control will pass t o the statement immediately following the
last statement in the DO loop. If a DO loop is allowed to terminate
naturally, that is, the loop parameters have been satisfied, the
value of the index variable is not saved, and consequently is not
available for later computations. If the loop is left by a branch be-
fore the loop parameters have been satisfied, the value of the index
variable is available for subsequent calculations.

If the programmer wishes to save the value of the DO-loop control
variable upon special exit, he has the choice of ei ther using the
control variable a s i t i s , o r of setting some other variable equal
to it. T r u e o r fa l se?

Answer: does not

Answer: True

Answer: T r u e

Dl[. E. 26 Suppose that during the f i r s t iteration of the DO loop the value in
(Cont.) ARRAY(1) is tested by the IF statement and found to be positive.

Then the next two statements to be executed will be and

Suppose no negative values a r e found and the DO loop has completed
a l l i terations up to and including the value in MAX. Control is then
passed to the next sequential instruction following the CONTINUE
statement. This statement then t ransfers control to statement-.

On the other hand, suppose that, during any loop, the IF statement
found a negative value in ARRAY. The next statements to be executed
would be and

Are these two statements inside of the DO loop?

In this case , a "special exit1' has been made f rom the loop without

Answer: 6 , 3

Answer: 40

Answer: 5, 20

Answer: No

satisfying the requirements of the DO-statement parameters . True or
fa lse ? Answer: T r u e

In this ca se , the variable ISAVE holds the value of I, which is the number
of the loop last begun, a l so the index of the negative value found in ARRAY.
True o r fa l se? Answer: T r u e

The main advantage of saving the value of I in ISAVE is that now the
variable I may be used elsewhere without destroying its contents.
T rue o r fa l se? Answer: T r u e

$
2

r
n

.

Q
,

C
A

&

g
%

Q
,,

3
g

c
e

o

z 2
2

III. E. 28 A DO loop may contain within i t one o r more other DO loops. Many

DO loops may be llnestedll within a DO loop. Mow many DO loops a r e
in each example here ?

0 20 DO95 I = . . . @ 20 D O 9 5 I = . . .

30 D O 9 5 J = . . .

95 CONTINUE

75 DO 200 L = . . .

00 CONTINUE

60 D O 3 0 0 M = . . .

250 DO 400 N = . . .

400 CONTINUE
300 CONTINUE

45 DO 50 IB6 = . . .

, 50 CONTINUE

Answer: @ 2 loops

95 CONTINUE

' III.E.32 The power of the nested DO loop is well exemplified by the following
s o r t program. This program will s o r t an a r r a y containing random
numbers into one which is in nunlerically ascending order . This is
accomplished i n only eight FORTRAN statements no mat te r what the
s i ze of the a r r ay .

F o r illustrative purposes let 's assume we wish to s o r t an a r r a y of
five values. For clarity, and also because programs should b e
written this way, comments will be included in this sample s o r t
program.

-------- C fo r Comment FORTRAN CODING FORM

FORTRAN STATEMENT

I
C.L

BI[H. E. 32 Let's follow this program using actual numbers. Assume we wish
(~ o n t .) to sor t the following array.

In this sor t program the outer loop defines which values in the a r ray
a r e to be compmed and bterchanged by the ime r loop. At each
compbtion of the outer loop one value has been sorted out as the
lowest of the values compred and properly positioned in the array.

After completion of the first pass through the outer loop, the smallest
value of the array, in our sample case, 3431, will now be in position
X(1) of the array, and the value formerly in X(1) will be in X(3).

Up to this point, this p r o g r m has operated exactly like that in W. E .19,
which placed a value only in the first position of the array. But now we
go a step farther, because after the second pass the next smallest value,
X(5), will be in X(2) md so on to compbtion.

En the table on page 193, each line across represents the a r ray gfter one pass
~ r o w h the -inner loop. The logic of the program is followed in that the
hdices for both the outer and d e r loops a re indicated, the eo rnp re is
shown, the iraterchange of values, when necessary, is indicated, and Lhe
current s h t u s of the array is given. The values in the a r ray which a re
compared a re indicated by being underlined. When the outer loop is
completed, one more value has been sorted and positioned. Tihe value is
circled when this occurs.

IH. E. 32 Before you answer the questions about the table which follows,
(Cont.) notice that the problem h e r e is much like that in III. E.19 except

that he re you do not s top after finding the smal les t value, but next
go on to find the second-smallest value, then the third-smallest
value, and s o on. Refer to the preceding coding and the table that
follows, and answer these questions:

a .) In the present probl'em, the smal les t value considered in any Answers :
comparison always ends up in X (2 , and the value compared
t o i i t i s i n X (1. a .) N, IK

b.) During the f i r s t i teration of the outer loop, the value of N is
; therefore, the smal les t value found will be s tored in

x u * b.) I, 1

6.) During the second iteration of the outer loop, N = , and
J = (which is also the initial value of K) . 6.) 2, 3

d.) This means that, during this second iteration of the outer loop,
the f i r s t pair of values to be compared--X(N) and XqK)--will
be X () and X u . d.) 2, 3

e.) Therefore, during the second iteration of the outer loop, the
smal les t value will be s tored in X(N) ; N = .

f.) Because the outer loop on each iteration increments the values
of N and J, the low value put in X(N) during any iteration is left
untouched during subsequent iterations and is not used in any
future comparisons. True o r fa l se ?

e .) 2

f.1 T r u e

IPI, E. 32
(C ont .)

g.) After the first three iterations of the outer loop have sorted
the three lowest values and stored them in X(1), X(2), and X(3),
the fourth iteration compares the values in X(4) and X(5) .
Therefore, four iterations of the outer loop a r e sufficient to
sor t and store fivevalues, and you can write: N=l, 4 as the
outer loop's variable. True o r false?

h.) If you write the outer loop's variable as N=l , 4 to compare five
values, how should the same variable be written to compare 50
values ? To compare 100 values ?

i .) In this program, the outer loop with i ts DO statement selects the
values to be compared and identifies the storage location for the
low value found; whereas the inner loop does the comparing and, if
necessary, interchanging the values. True or false?

j.) The coding at the beginning of this problem would work equally well
if you were to delete from the outer loop the statement J=N+I and,
instead of having the inner loop se t K equal to J, write
DO 100 K=N+1, 5 as the inner DO statement. True o r false?

k .) Notice that the control variable for the outer loop has a maximum
value of 4, whereas the inner loop's variable is always one integer
higher (both initially where it is equal to N+1, and in its maximum
value of 5.)

This permits the inner loop's conk01 variable to select, for
comparison with the array value selected by the outer loop's
variable, the next value beyond the first, and then the next value
beyond that one, and so on. In this way, the first selected value
is never compared to itself. True or false?

g.) True

h.) N=l, 49
N=I, 99

i.) True

j,) False. A DO parameter
must be a simple variable
or constant, not an
expression.

k.) True

III. F. 5 The END statement is mandatory, and i t does exactly what it says,
it defines the end of a program or of a subprogram. The final state-
ment ofaprogram or subprogram must be an END s ta tement . When
a source program consists of a main program plus one or more
subprogram, then each of these parts must have an END statement
as the last statement. The opening statement of another subprogram
will follow immediately after this. For example:

PROGRAM

STOP

END
SUBROUTINE

END
SUBROUTINE

END

The word END may be followed on the same line by the name of your
program, if you wish it for your own convenience, but the compiler
will ignore the name.

The STOP statement terminates execution of a Dromarn. . -
The END statement terminates compilation of a program.
THE3 IS IMPORTANT! ! ?

W.A. 1 A11 the p rog raming skill and hardware technological advances
available would be completely useless if there were no way for .the
computer to communicate its "answer" to the user. Furthermore,
supplying data to the computer would be extremely tedious if the
programmer needed to code each piece of information into the
program. Fortunately, there a re convenient ways for the user and
the computer to exchange information. Such exchanges a re common-
ly known as "input/outputv, or "I/OTT. The user "inputs" data and
instructions, the computer "outputs" results and commentary.

IV. A.2 Cards into which data has been keypunched i s a primary means of data
input. There a re 80 columns (spaces) per card and all 80 columns may
be used for data. FORTRAN coding forms are used when writing data
and, since all 80 card columns may be used, the 80 co lums of the FORTRAN
coding form may be used also.

Output to the prir~ted page i$ limited to 132 characters per line.

PV.A.3 Several input and outwt devices may be utilized by a FORTRAN
program, the most common being card reader, card punch, printer
and rnllgnetic tape. The computer nses the card reader to obtain
irmformation from punched cards; the card punch to output informa-
tion onto cards; the printer to output Wormation in prhted form; the
mase t i c tape both for reading and for writing information.

Of the above four devices, and are input devices, Answer: Card reader,
while 7 , and are outpul. devices. magnetic tape -

Card pwich, prh ter ,
map;neti@ tape

- k
a,
k

Q
ed

0

rn

+

cd
E a,

A

;f=

3

cd
E:

+

.,-
I

cd
5

5

9
.do a

PO"
3

2
rn
a,

3

5
1
I

k

rn
C

,
+

2

cd

0

9

+
.,

+

b
8 E a,

ffl
*a

E
cd
*

a,
rn

$2
F

-4

0

cd
C

,
k

cd
--a

3

0

$53
9

rn
0

S
G

L
-g

59 51
s $

3

"

4-2 G

:
 8

3
3

2

&

*
a,

."
>
a

.G

B
&

H
Z

W. e.2 Of the following five items, which are acceptable in an I/O l ist?
(Cont.)

A. x m
B. IFLAG
e. 24CPS .

D. ARRAY (1, 4)
E. INDEX (I)

BV.C.3 In the preceding question, item C is not acceptable in an I/o list
because it is not acceptable as a FORTRAN variable name.

IV. 6 .4 If an item in an I/O list is to be subscripted, the subscript
must be of the form (c * I & d) , where c and d are positive
integer constants or zero, and I is a simple integer variable.

Which of the following subscripts a re unacceptable in an 1/0
list ?

Answer: A , B, D, E

Answer: B, E

HV. C. 5 If you missed this one, remember that a variable used as a
subscript may not be subscripted itself, and must be integer
rather than real.

IV. C. 6 Arrays to be input or output may be handled in several ways. If the
array name appears in the I/O list without any subscripts, the entire
array will be transmitted, according to the size specified in the
DImNSION statement, arnd having the first subscript varying first.
For example:

DWlENSION MATRIX (4, 4)

READ 10, MATRIX

10 FORMAT (4E16.8)

would read from cards 16 quantities according to the FORMAT
statement which will be described in the next section. The
quantities are stored in the array MATRIX, the first going into
MATRIX (1, I), the second into MTRIX (2, I), the third into
MATRIX (3, 11, the fourth into MATRIX (4, I) , the fifth into
MATRIX (1, Z), the sixth into MATRIX (2, 21, etc., until finally
the sixteenth would go into MATRIX (4, 4).

If ARRAY has been dimensioned (5, 51, how many quantities would
be written by the statement PRINT 14, ARRAY?

Which would be the first quantity written?

Which would be the last quantity written? -
Which would be the twelfth quantity written?

Answer: 25

Answer: ARRAY (1, 1)

Answer: ARRAY (5, 5)

Answer: ARRAY (2, 3)

IV. 6.7 Remember, the first subscript varies most rapidly in this kind
of array transmission.

-203-

W . C. 9 Note t h t when an implied DO Poop is used in an I/O list, a se t of
parentheses must enclose the a r ray name and the DO-loop parameter
specifications.

Each subscript on the variable requires DO-loop parameter specifications
and a se t of parentheses.

Suppose ar ray CAT has been dimensioned (3, 3, 3). To read in all the
elements of the ar ray, varying the f i r s t subscript f i rs t , the second
subscript second, and the third subscript Past, what would the implied
BO loop look like? Answer:

(((CAT(1, J , K), 1=1,3), J=1, 31, K=l, 3)

IT;. C. 10 Of course, in the answer to the above question, any acceptable variable
names could be used in place of I, J and K. But it is important Lo note
that for three subscripts there a r e parentheses enclosing three se t s of
DO-loop parameter specifications, and each right parenthesis except
the last is followed by a comma.

TV. C. 11 Example:
DWENSION RAT (6, 8, 7)
READ 10, RAT (1, 3, 51, RAT (2, 3, 5), RAT (1, 4, 5), RAT(2, 4, 51, RAT (1, 3, 6), RAT(2, 3, 6),

I RAT (I, 4, 6), RAT (2, 4, 6)
10 FORPUIAT (4 E16.8)

Rewrite the above input statement using an implied DO loop to accomplish the same result.
Answer:

READ 10, ((@AT(L, M, N), L = l , 21, M= 3, 4), N= 5,6)

IV. C. 1 2 Work Exercise IV. C in your workbook at this time.

W. D Data Formatting

Although most computers are binary, dealing with, say, ones and
zeros only, most computer users prefer to think in terms of alpha-
betic and numeric characters. A term used to mean a mixture of
alphabetic and numeric characters is alphanumeric, To satisfy
both computer and user, there are several types of data conversions
available in FORTRAN. If the programmer wants any of these con-
versions applied to the data transmitted by his list, he provides a
FORNIAT statement, specifying the precise type of conversion for
each item in the list.

hW. D. 2 The FORMAT declaration is a non-executabie statement, may appear

anywhere within the program, must have a statement number in columns
1-5, and be of the form

n FORMAT (specifications)
where "nql stands for the statement number, and "specificationstl will be
explained shortly.

What fault do you find with each of the following FORMAT forms?

FORTRAN CODTNG FORM

Answer: A. No statement number in 1-5
B. No parentheses around specifications
6 . "FORMAT" missing

.. m a
'T

I $2
.5?

8
'
0

6
)

%
S

Q
)

9 3
 i

*%r.i-
a
0
6
3

k
r-

0

'T
'

Q
)

a
23

e
.2

d

ra
T

e
$

k

g sg :

7%: 2
g

g
Q

)

u edg

'T
I

Q
)

d
-
,

d

.A

k

a

"3

9
*

- 3

0
,

q
d

.2
 8

=
IP

I*
.'k

O

d
"

 g
fi2

-Z

0

?pi
-@@&

,&

$
*

 s
;.u

o
,;

m
B

g

fa
gC

"1!.:4
2-3 u

"
m

p
a

I
 k

k
O

5

0

2
8

4
:

~

.
;.d

a
d

;
Q

)
Q

,
W

W
d

*

.c
r

-a

4
g

8
Q

,g
3

i

k
s

g
w

 fa
d

a
p

m

"

B
$

3
$

$
s

"

k

k

a
@
 &

-d
"

g

g
.s

.
.d

&
g

*s
y

$

9
3

g
g

1
g

g 2

rn w

..s3
6

)g

H
Z

a
ilp

0
,
*

0

B
p

fg
e

if
$ 3

 .S! .d -
,s

3

k
b

: ed
-
4

 gj
0

a
m

&

*
5

g
Q

,.g

p
@

r
n

$
E

g

I
t

~
f

l
~

8

a
k

~
B

s

IV. E Ew. d Conversion, Output

IV. E. 1 For output, a number converted by the Ew . d specification will have
the form

100 < eee 5 322 -

where b indicates blank character(s), X the most significant digits of
the integqr and fractional parts , and + eee or Lee the power of ten by
which the number is to be multiplied. The second blank will be replaced
by - for negative values.

By the specification E 12.5 output of the value +500.500 would appear on the
printed Page $

w the field width (in this ex. w = 12)

a the spaee reserved for the sign of the number

b the most significant digit of the number

c the decimal point

d the number of decimal places in the specification designates d digits
second in significance only to b.

e the exponent, whose field width is always 4

The minimum value w is d + 7. T h e r e f ~ r e ,

A. For the E-type number -4.3953+02 how long is the d-field?

B. By what number should -4.395 be multiplied to represent the
actual quantity?

TV.E.2 If d is zero o r b , the decimal points and all digits right of it a r e
suppressed. For example, if A contains + 439.5, an E7.0
conversion specification would cause

Answer: A . 3

2
B. PO o r 100

where each b is a single blank, to be printed or punched. The
plus sign is suppressed.

If X contains +500.500, what will the output look like for each of
the following conversion specifications?

Answer: A. b5.00500E+02
B. bbb5.00500E+02
C. bbbbb5E+02

TV. E. 3 The full field width, w, must be large enough to accommodate the output
quantity, including the sign, significant digits, decimal point, sign of the
exponent and exponent. Remember the rule is to figure w - > d + 7 .

1V.E. 3 What is the minimum value for w which would allow three significant
(Cont.) figures of the quantity -57900.4 to be output by Ew.d format?-

Give the "E" representation of the number.
Answer: 9

-5.793+04

What is the minimum value for w which would allow six significant
figures of the quantiq 98765.4321 to be o&put by Ew. d format?- Answer: 12
Give the "ElT representation of the number. b9.876543+04

IT. E.4 If you said eleven in answer to the last question, remember that space
for the sign must always be provided even though the plus sign is
suppressed when positive quantities a r e output.

rCT, E.5 Suppose the w field is not large enough to accommodate the output
value. m e n the computer encounters this situation during execution
of a program, the output statement will print as many of the least
significant digits a s possible and precede these by an asterisk (*).
Example :

QBAR = 4790.2358
PRINT 10, QBAR

10 FORMAT (lX, E18.5)

Output would be W79024E+03.

W. E.6 Up to 14 significant digits may be output by Ew. d type specifications.

IV. E. 7 Work exercise IV. E in your workbook at this time.

W . F

IV. F. 1

IV. F. 2

Ew. d Conversion, Input

The total n u ~ b e r of characters to be input is specified
by w. The field may contain up to 15 significant digits, blanks a r e
considered to be zeros. The input w-field may consist of one o r more
subfields, namely integer, fraction and exponent. A sign for the
qan t i ty is not required, but if absent it will be assumed to be positive.
Examples of valid subfield combinations for Ew. d input a r e

Integer, fraction, exponent
Integer, fraction
Integer, exponent
Integer only
Fraction only
Exponent only (interpreted as zero)

A l l three subfields a r e required to be present in all Ew. d type input
conversion specifications. True o r false?

Note that the integer subfield may s ta r t with a sign, + o r -, o r a digit; the
fraction subfield begins with a decimal point; the exponent subfield may
begin with E , + o r - . If the exponent subfield should begin with E ,
the + sign is optional between the letter and the string of digits following
the letter. The value of the exponent subfield must be less than 322.

Which subfields a re present in the following Ew. d type numbers ?

Answer: False

Answer: A. Integer, fraction,
exponent

B. Integer, eqonent
C . Integer, fraction

The number of digits in the field following the decimal point
is specified by d , If d does not appear in the Ew. d speeifica-
tion, a s in E9, it is assumed to be zero. Input values for Ew.d
conversion may be written with o r without a decimal point.

If a decimal point does not appear in the input field, d in the format
specification is used, and the quantity will be multiplied by

to position the decimal point. Thus a number is interpreted in
this manner:

(exponent subfield) 10-d
(integer subfield) x 10

Consider the examples

where no decimal points a r e present. Example A, if converted by an
3

235.2 specification, would be (326x10 ~ 1 0 ' ~) or 3260.0. Example B
0

would be (12345 x 10 x lo-') o r 123.45 for a specification of E6.2.

A decimal point in the input field of w characters always takes precedence
over d. If the input field contained 3260. o r 326.+1 instead of 326+3 (Example
A above), the result would still be 3260.0. (d = 2) in the E5.a format is ignored.

With an E7. 1 specification, what will be the values of the following input
qumtities ?

A . 987.000 Answer: A . 987.000 22
B. 1.43+22 B. 1 . 4 ~ 10
C. -20E+03 e. (-2o)x l a x 10 = -2000.0

IV. F. 5 It is important that the w in an Ew'. d input specification should be
exactly the same length as the field containing the input number. If
it is not, incorrect quantities will be input. Consider the following
example:

It is desired to input three quantities --

They a r e punched in the f i rs t twenty-six columns of a card thus --

Input conversion specifications of E10.5, E6.1, E9.5
would interpret the three quantities

F O R T R A N STATEMENT IDEWTIFICAIIW -- -. . .
.WBER

O ~ O O O O O O O O O O l D O O O O O O O O O O O l o O O O O O O O O O o O O O o O O O O o O O O O O O O O O O O O O O O O O O O o o o O O o o o o o o o o o ~ @
112 J I s 6 7 I a ~ o t ~ ' ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ t ~ m ~ t n n ~ ~ ~ o n ~ s a a s s w ~ a n ~ a r a t a r ~ a u u n a n a a a a s o s ~ a u w s s s j r w c s s w e c ~ ~ m ~ ~ s m ~ ~ m m ~ ~ ~ z n ~ ~ n m n m m a '
$ 1 1 l l l l l l l l t 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 l 1 1 1 1 1 1 1 1 1 1 1 1 ~

as .0000314159, 0.0, and .72642 .

On input, some value read by an EM. d specification will always
be stored in the computer, and it is very important that the
progsannmes insures elhat it is the correct value.

With an E7.3 specification, what value would be stored for each of
the follow* bput numbers :

Answer: A. 246.3
33. 246.0
C. 246.300
D. 246000.0

PV. F. 6 Work Exercise TV. F in your workbook at this time.

TV. 6.1 Now that you are familiar with the most complicated type of con-
version, let us consider others. F-type output is similar to
E-type: w sets the total field width and d specifies the number
of digits to appear right of the decimal point. The difference
between E- and F-type conversions is that in F-type the exponent
subfield is not outpul, and is assumed to be zero.

We @. 2 Restrictions pertaining to E-type conversion also apply to F-type:

If d is zero or blank, the decimal point and numbers
right of it are suppressed.

If the field is too short to contain the output value, an *
followed by as many of the least significant digits as the
format can take care of will be output.

The output of values 267.26 and -13.54 by an F5.2
specification would be *7.26 and *3.54.

The sign is output only when the number is negative, k t a
@ p e e must be allawed even thou& the sim of the number
is positive.

W. 6 . 6 If the field is longer than the quantity to be output, the
number will be right-adjusted in the field and extra spaces
filled with blanks.

What would the output look like if each of the following quantities
were output by its accompanying Fw. d specification?

TV.G.7 At this time work Exercises IV. 6. in your workbook.

IV. H. 1 Fw. d input specifications a r e similar to Ew. d input specifications.
Again the difference is that the exponent 'subfield is omitted, a d is
assumed to be zero. All Ew. d restrictions apply to Fw. d.

IV. N. 2 At this time you should work exercises 1V.B in your workbook.

Answer: A . b3.14
B. b500000
C, b2468.1
D. -999.111
E. *45.678900

IV. I Iw, Input and Output

I-type conversion is used to input or output integer quantities.

Which of the following variables should use I-type conversion
if no type declaration has appeared in the program?

A . PI
B. HOURS
C. MINUTE
D. ALPHA
E. INDEX
F. N
6, RAD
W. KOUNT

IV, I. 2 In Iw specifications, w determines the width of the I/O field. On
input if blanks appear within the field, they will be interpreted as
zeros.

What value would be stored for 5bb65, read by an I5 specification?

Answer: C, E, F, H

Answer: 50065

0
P

-

N

0
s

-

N

0
8

-

N

-
6

-

N

w
8
-

N

o
t

a
-

N

O

f
-

N

g

l
8

-

N

w
s

-

N

0
E

i
.

e
-

N

0s.-

N

0
W

P

N

em.--

N

O
G

P

N

0

s
-

N

O

W
.

-

N

W. 3 Editing Specifications

IV. 3. 1 Many times computer programs make provision for punching out
cards containing several items of data to be used as input for another
program. Should the second program not need aU. the data items on
a card, or not need each sequential card, it would be extremely tire-
some to repunch or reassemble the input data deck. For this reason,
and for spacing output data, editing specifications are available which
permit skipping columns, advan~ing to the beginning of a card or printed
line, and inserting commentary, titles, labels, etc.

2 0
.A

u

Ri
0

3
 0

Q.'
a

m

srro?qzag~aads aoy paarnbaa aq ppo~ spaaa Lam fioq 'smaqr aag andq o&

.srneq? zqzp ow ap3 Burpsas jrap paddjys eq s)
pa3 auo asneo g qas 'e~oyaaaqg, 'pzea eq o.g an? sal.gramnb aaom o'm

q2noq[l uaaa 'u@aq 07 pa33 puoaes a yo 2qpeaa grm "03s 53 pn:, pq[l 30
%qpzaa sasnza qsars aqq 'pa~a qsqy a% mo~y p~ea aq ppoila saqsn ow 6a

ewa uI;% 'pa33 puoaas aq3 moq pea2 aq pTrnia aqsa puoaes aq. pm "dgs

op pa33 .psa$y apq yo %qpzaa sasnz:, qw~s eqq 6paa:, JSJ~ eq2 rnog pea2 aq - p1no.h anpn auo ' assa q 'paqnbaa a= spa3a ow 'suo~$~agnads
yo spas asaq.p yo aaq7l.a 6q sal~!$rixsnb aa%a$q ow rrT psaa o) aepao u~

sao~$~o~jro&s aq? aapxsuo3
*@aq 03 pma mau e mo Sqpzaa prrr? 'aszao 0% pmo ImajrJna jo 3qpza~
sasnza ym~s aqq %o~ssrarsmq qndu; q 'qnano pm qnduj zoj s~aage

qmaaagjp 61qqSgs szy suo;?eogyoads pnrzo3 jo qsq e u! qsqs a¶;$, z 'a 'AI

W . K. 3 In output specifications the slash indicates "terminate and begin. "
Consider again the specifications

A. n F O R m T (14/15)

B. n FORMAT (14, 15/)

In order to print two integer quantities by se t A , two lines a r e required.
The f i rs t h e will contain the f i rs t quantity; the slash terminates print-
ing of the f i rs t line; the I5 speclifieation causes printing of the second
quantity on the next line. In case B two lines will be printed: the two
quantities will be printed on one line; the slash terminates printing on
that line, and causes a line of blanks to be printed on the second h e .

Now many Zinea a re r e w i r e d to print five quantities by specifications

A. n F O R m T (4 X , 15, 1 1 0 / 4 ~ , E15.5, F10.5, E15.5) Answer: A. 2

B. n F O R m T (15, 110, E15.5, F10.5, E15.5) B. Y

C. n F O R ~ T (15, 4X, 110, E15.5, F10.5, ~ 1 5 . 5 /) e. 2

D. n FORlMAT (/15, 110/~15.5 , F10.5, ~ 1 5 . 5 /) D. 4

IV-K4 In. part D. , the f i rs t slash Lerminates printing of a blank line, the
second slash ter es prinlting of a line wiLh two integer quantities,
the third slash terminates printing of a line with three rea l q u a i t i e s
d grints a blank line--a total of four lines.

rv. L

33'. L.'.

IV. I;. 2

wH, Output and Input

The wH output specification is used to insert w Hollerith characters
(6-bit alphanumeric characters) into the output record. The w
characters to be inserted follow immediately after the H in the
format specification. For example, if the specifications

n FQRIMAT (1OX1SKTNEbEbANbEXAMPLE.)

are used to output one line, the line would be

bbbbbbbbbbTHISbISbANbEXAMPLE . bbb - - -

In the wH ouwut specification, w must be equal to o r less than 132
since there a re only I32 print pos'itions on most printers. A comma follow-
ing the w characters is optional.

What would the printed line look like if it were output according to

n FORMAT (4X, 10mVELOCEUb, 3X, 4HTIME)

wH, input specification causes w Hollerith characters to be read into
the specified FORMAT statement. For example, if a card were
read by

n FORMAT (1 5Ilbbbbbbbbbbbbbbb)

the first 15 columns of the card would be read into the 15 blank
spaces following the H of the specification. This same FORMAT
statement, containing its new Hollerith characters in place of blanks,
could then be used to output a title, label, or commentary.

If a card were read by specifications n FORMAT (17El[bbbbbbbbbbbbkbbbb),
and the card contained NOVEMBERb24, b1968 in the first seventeen
columns, could the same format later be used to print a date on output?

Answer:

bbbbbVELOCITUbbbbTIIVIEbbb - -

Answer: Yes

N. N Enput/Output Statements

N . N . 1 Now that you know how to specify which data items are to be input
or oudput from a list, and in what form they are to be transmitted by
means of F O R m T conversion specifications, there remains one
fuFLher process to be mastered: namely, writkg the input/output statements.
As you h o w , tbe hput operation is readhg -- punched cards or mametic
tape; the output operations a re m i t h g -- magnetic tape, -- on paper,
and -- cards. Each operation makes reference e of
equipment -- a card reader or punch, a magnetic tape unit or the printer.
So input/output statements must include two pieces of Mormation in
addition to list and format reference number. These two pieces of
MorlnaLion are the kind of operation desired, and the piece of equipment
to be used. A typical I/O statement has the form

or
OP (i, n) L

where OP specifies the desired operation, i is an integer constant or variable
designating the I/O equipment, n is a FORMAT statement number, and L
represents the list.

Now many elements make up the second form of a typical input/output
statement as shown above?

These elements a re , I/O unit number, , and list.

IV. Y. 2 The read-card operation is stated

READ n, L

This statement will cause one or more cards to be read from
the card reader according to format, n, and list, L.

Which of the four I/Q statement elements is missing from the
preceding READ statement ?

Answer: 4

Answer: operation

F a W T n u d e r

Answer: I/O unit e r

W,N. 5 If formatted data is to be read from a magnetic tape unit,
the READ statement must specify which unit. Therefore, the
READ statement will be

READ (i, n) L

Notice that when the unit number and format nunzber are enclosed
in parentheses, they are separated from each other by a comma;
but the right parenthesis is - not separated from the list by a comma.

Wr ik the statement to read three real values for X(5), Y(10) and
ALPNA, in that order, from magnetic tape unit 4, according to

500 F O R U T (3X2E20.10, 5XF5.1)

IV. N. 6 An equivalent way of writing

READ (i,n) L

is to write

READ INPUT TAPE (i, n) L

What is the equivalent form of

READ INPUT TAPE (5, 50) MATRIX ?

Answer: '

READ(4,500) X(5), Y(10), ALPHA

Answer: READ (5,50) MATRE

Remember, when a dimensioned array is used in an I/O list
without a subscript, the entire array is transmitted before
the next item of the list is transmitted. Therefore, the
result of

PRINT 976, KOUNT, ANGLE
976 FORMAT (1HO 125, 3X, E20.10)

would be

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10

KOUNT (1)
KOUNT (3)
KOUNT (5)
KOUNT (7)
KOUNT (9)
ANGLE (1)
ANGLE (3)
ANGLE (5)
ANGLE (7)
ANGLE (9)

KO'UNT (2)
KOUNT (4)
KOtTNT (6)
KOUNT (8)
KOUNT (10)
ANGLE (2)
ANGLE (4)
ANGLE (6)
ANGLE (8)
ANGLE (10)

This is bad enough, but there is worse trouble: every item from
KOUNT which appears in the righkhand column would be converted
a s though it were a number, which it isn't, and every item
from ANGLE in the left-hand column would be convertxid as though it
were an integer. Recalling the computer forms of real and integer
numbers, with and without characteristice, you might imagine'the
"real1' KOUNT items would all be printed as zero, and the "integert1
ANGLE items would all be very large integers indeed 1

s
o
-

s
 a -

0
s
-

Z

=
k

?
r

q

0
s

-

a
x

-

LT
o

n
-

O

R
-

I-
,,,

(%:
0

8
-

o

w
-

0

,*,
D

m
-

0

e
w

-

k

o
z
-

0
%

-

=
a

-

0
 x -

0
R

-

e
 Fd -

0

g
 -

W -
8

%
-

5
%

-

!
"
'-

-=-
s
t
-

c
!

2
-

3
 L

iz

'!
i

a
O

Q
-4 '5 E
cd3

2
""0

0

4

w

 +-,

Wr. N, 12 Several things to note in the above twelve lines of coding are:

(1) IDATE mus t be dimensioned a t l ea s t 3, since it will
require 3 computer words to contain enough display
code (or dphanumeric) characters to write the date
in Pull.

(2) Since IDATE i s not subscripted in the r ead statement,
the entire array -- 3 words in the case - - will be
read in.

(3) hlthougla F O R M T statements may appear angr place in
a program, it is convenient for debu g and re ferenew
pwpwes.to keep them near the I/O statement using them.

(5) An itern may be input in one statement and then used in
the same sLaLement for reading other itemsr

(8) Im the format, IN1 advances the paper to a new page before
printing the date.

(9) Note there is no list with this stabment -- this ixnplies that
the format will consist of editing and/or labellhg specifications
only.

(10) The hitid slash skips a line before printing, 1X insures that
Wne e m r i q e control will indicate sbgle spaciing; an alternate way
of acMev7Hng this spacing would be to replace "/lxfl with "lWbH.

(8)-(10) Formats 102 and 103 could have been cod ined :

102 IFQRmT (1H1 12, 1H/ 12,1H/ I2 ' k / / 1X4HHour ZZHTEMPERATURE IN DEGR.EES)

TV. W. 12 In this case lines (9) and (10) would be unnecessary. Since an output
(Gont.) line can have up to 132 print columns, the above output could have been

centered on the output page by following the output format carriage control
characters with 50X.

(10) An alternate way by which this format statement could have been
written is as follows :

103 FORNIAT (/* HOUR TEMPERATURE IN DEGREES*)

Note that it is not necessary to count c h a c t e r s when using this
method.

The simplest example of a DATA statement is the statement

DATA PI/^. 14159265/

This is equivalent to the arithmetic statement

except that in the DATA statement the value is assigned to the variable
at the time the program is compiled. The latter ease is a simple form
of an arithmetic statement whieh is prformed during execution of the
program.

Little benefit is obtained by using a DATA statement in the above
ple. The most advance occurs when assigning values to arrays.

When a DATA statement refers to an array, the array must be properly
dimensioned and the DIMENSION statement must appear prior to the
DATA shtement.

An array must be dimensioned prior to assigning it values by use of a
DATA statement. True or false ?

IV. 0.3 The type of the constant stored is determined by the structure of the
constant rather than by the variable type in the statement. In DATA
A/2/, an integer 2 replaces A, not a real 2 as might be expected from
the form of the name A.

2 & 7
\ - * * "

Constants in data statements are not conve b y h a t c h the type of the
variable b, which they are assigned. True o r W s e ?

Answer: True

Answer: True

IV. 0.7 Another form of the DATA statement is

DATA dl , . . . , d, /al , k*% , . . . , % /
where k is an integer constant repetition factor that causes the
constant following the asterisk to be repeated k times.

For example, the statement

DATA FAT, CAT, SAT,RAT/~. 0,2*5.2,2.1/

i s equivalent to the statement

DATA FAT, CAT, SAT, RAT/^. 0,5.2,5.2,2.1/

The statement

DIMENSION AMAT(10)
DATA AWT/10*3.2/

will assign the value to each of the ten elements of the array.

IV. 0,8 Variable Hollerith or alphanumeric information is frequently needed
in a program. This may be defined by a DATA statement with a
maximum of 10 characters to a word.

Example:

DIMENSION MESAGE (2)
DATA MESAGE/l 0HTHISbISbAN9 8NbEXAMP LE/

Array MESAGE: T p TS &N EXAMPLE

I

' I

Answer: 3.2

IT. 0 .9 What would be stored in core for the following DATA statements ?
(C ont .)

A. DIMENSION TABLE(3)
DATA (TABLE(I), 1=1,3)/1.0,2.0,3.0,4.0,5.0/ Answer: 1 .0 , 2.0, 3.0

B. DIMENSION TABLE(5)
DATA (TABLE(I), I=1, 5)/5*4.0/

C . DATA MESAGE/~IHTNIS~IS~BAD/
*

Answer: 4.0, 4.0, 4.0, 4.0, 4.1

Answer: TKISbISbBA

IV. 0.10 If you missed the last problem, remember that only ten characters
may be stored in one computer word.

W. 0.11 Another form of the DATA statement may be used. This form is

DATA (dl = listl) , (d, = l i sb) , . . . , (4, = l ish)

where dl , d, , etc. may be a simple variable or a subscripted
variable with or without subscripts. The list is a set of constants
as before except that relpetition is indicated by a set of parentheses
instead of an asterisk.

For example,

FOZTRAN COSnTG FORM - C fo r Conment -- 7

FOZTRAN STATEMENT 1

-- - -- - -

are all accepbble. Notice that as in the first form, an array name
without subscrifls implies the entire array.

IV. 0,12 Now you are ready to work tbe final Section 1[V exercises in your workbook.

V, A Statement Functions, Function and Subroutine Subprograms , COMMON

V.A.l In previous sections you have learned to write fairly complicated
programs which included the input of certain data, the required
calculations, and the output of the results. In theory, these tools
previously presented will solve almost any numerical scientific
problem. In practice, however, the series expansion of a few
hundred trigonometric and exponential functions in some problem
would probably cause the programmer to decide on a different
career. To prevent such a mass exodus, FORTRAN provides
the programmer with methods for handling often-repeated functions,
namely, statement functions, function and subroutine subprograms.

V.A.2 Statement Function

V.A.3 There are two ways to write a function. The first method is used
when the function can be expressed with one FORTRAN statement.
This is called a statement function. A statement function is defined
in the program where it i s to be used.

The form of a statement function is:

Name (pl, p2, . . . , P,) = E

p . are formal parameters @F arguments) and must be simple variables.
1

There must be at least one and not more than 60 parameters.

E is an expression, arithmetic or logical, which is a function of the
arguments pl, p2, , .

pn

V.A. 3
(6 olmt.)

A statement function must always be defined in the program in which it
is used. T rue o r false?

Statement functions a r e named according to .the ru les which apply in
the naming of variables.

The statement function below may appear in a program.

J-. C for Comment
FORTRAN CODIPJG FORM

I
FORTRAN STATEMENT F i " i I

The name of this statement function is

I t has one formal parameter ,

A statement function must preceed all executable statements in the
program. It must follow a l l DIMENSION, type, COM;lVION, and
EQUIVALENCE statements which pertain to variables used in the
function definition. COMMON and EQUIVALENCE will be discussed
la te r in the chapter.

Answer: True

Answer: POEH

Answer: X

V.A. 5 What is wrong with the following sequence :r

(C0g;t.)
FORTRAN CODING FORM

FORTRAN STATEMENT I En I

[& -----L 3 ,q'[-- A L L -- -

; AFUN (J , K) = L (3) * J- K
- ~ - I I I I - . . - L ~ I ~ ~ I 1 1 1 1 I I I I ~ I I I I I I ' I I I ' ~ ~ ~ I ' ' I ' ~ ~ ~ ' ~ I ~ ' ' I [

I
I ' D I M E N S ION, L (1 0,) I

[I 1 1 1 i / i i - i b I i I 1 1 1 ~ I I I I I I ~ I I ~ I I ~ I I I I I I I I I I I ~ I ~ I / I

A statement function is referenced by placing the statement function
name in an arithmetic or logical expression. For example,

Y = POLY (XI) * Z + 1.5

references the statement function POLY (defined in V. A. 4). This

statement causes the expression, 2.0%**2+4.0*X+6.0, to be
evaluated using the value of X1 in place of X. The result
is then multiplied by the value of Z , added to 1.5 and
assigned to Y.

The result of POLY(X1) is since the type of a
function is covered by the same rules as the type of a
variable.

Answer: L(3) appears im state-
ment function before
it was dimensioned.

Answer: real

A logical expression may also be defined by a function statement.
An example follows:

*f-- C for Comment
FORTRAN CODING FORM

I

FORTRAN STATEMENT I

. I .J..I.. 1 - - -

I . I. 1 I I...

The logical variables X, and Y are the parameters of the statement
function. Answer: formal

A reference to the function will give a . TRUE. or . FALSE. result
depending on the values of the parameters. Answer: actual

V.A.10 A statement function name must not appear in a DIMENSION, EQUIVALENCE,
COMMON, or EXTERNAL statement. EXTERNAL will be discussed later in
the chapter.

If a statement function name were allowed to appear in a DIMENSION statement,
i t would look exactly like a -variable. Answer: subscripted

V-A.l l A statement function may reference library functions, FORTRAN
functions, other statement functions, function subprograms, but
not itself. Library functions, etc. will be discussed later in this
chapter.

Subprograms

A subprogram is a section of preprograrnmed coding which is designed
to accomplish a very specific objective, such as to evaluate a sine, per-
form an interpolation, etc.

FORTRAN provides a group of commonly used subprograms, notably
trigonometric and emonential functions, but also allows the programmer
to develop his own special subprograms for his own special needs.

In this discussion, the program that references or "calls" a subprogram
is referred to as the main program. It may be a subprogram which
references another subprogram.

One subprogram may reference another subprogram. When this situation
occurs, the subprogram which rsferenaes the other i s referred to as the

program.

A subprogram is written as an entity which is completely separate from
the main program. Once a subprogram is written, it can be used with
any program which bas need of that specific computation.

In using a subprogram, the programmer must do the following:

1 .) Indicate at what particular points in the program a subprogram
is to be used. This is done by a reference to the subprogram.

2.) Provide the necessary arguments to the subprogram.

Answer: main

V. B. 4 3.) Make sure that the arguments a r e of the type required by the subprogram.
(Cont.)i

4.) Indicate to the main program the type(s) of the result(s).

V. B. 5 See exercise V. B for an illustration of the use of a subprogram and
work Exercises V. B in your workbook at this time.

V. C Function Subprograms

V . C . 1 The preceding section discussed subprograms in general. The two different
t y ~ e s of subprograms are function subprograms and subroutine subprograms. The
first of these to be discussed is the function subprogram.

V.C.2 Just like statement functions, the function subprogram must be given a name.
The word FUNCTION, the name of the subprogram and the formal parameters
form the first statement. The type must precede FUNCTION if the first
letter of the name does not properly indicate the type.

The function subprogram, like the statement function, must have at least
argument and not more than arguments. Answer: 1, 60

V.C.3 The following function subprogram will sum the first N values from the
array A .

FORTRAN CODTNG FORM

*ma%oadqns aq se amen amzs a% seq qagm aQ
$0 an@n aqq sr rzreaojcd apm aq 07 pauzwaa SI qayq~h anp aq&

'are;h%a~dqns us;$ouq aq3 se ameu ams aq my ~\~las aIqerm6en aq&

-uo;aounj aq $0 anlea 3q3lnsa~ aqq sy mao~d upm aqq 0%

pauan3aJ sr loaquo~ am!$ aq 3e pqns jo anlen aq3 snq& "me;r%osd upm
aq) 03 pauznqaa aq o) qnsaa erg aqearpur 03 JapJo ul, anop aq slfzqz

lsnm syq;l, 'uoraaunj a93 qqq;~ a~qe~m~ e SE pasn s; uoFTou;nJ aq $0
amu aq $zq paagou Alqeqosd nos " E'3 'A uoy)oas jo a~duraxa sq~ q P.3-A

'IeaJ aq IIpi anlah
$uy3.[nsaa aq7 qsm swam s~qj~ - sa. uoy)autg aq jo ad& aq&

(.3uo3)
sy uogauq aqq $0 amen aq 'aaaqe aldm~xa ay? u~ C03"A

V.C.5 SUM (ALPHA, N) references FUNCTION SUM (A, N). When
(Cont.) RETURN is encountered, the logical program flow i s returned to

statement 10 of the main program. The result of SUM is divided
by F N and the quotient is stored in FL.

If the RETURN statement had followed statement 5 in section V. C. 3,
the resulting value of the function would always be

V.C.6 A function subprogram is referenced in exactly the same manner as
a statement function. The following program references the function
subprogram which was written in V. C. 3.

,[------ C for Comment
FORTRAN CODING FORM

I
tate-
ent No10 FORTRAN STATEMENT

50

In the above example, the first statement sets a maximum for the number
of values which can be assigned to the array ALT. This maximum is

Answer: zero

Answer: 11000

In the example of V. C. 6 , the read statement reads J values into the
array ALT. Lf more than 1000 values are read, no diagnostic message
occurs, but the resulting sum may be incorrect. One of the reasons
for this is that all values read after the 1505th value would be stored
in locations assigned to be used by other variables, constants or parts
of the program. Even if TOP were to give the correct value many other
errors could occur. This means that program restrictions must be well
known to the person using the program. The programmer, therefore,
should make a note of restrictions of this type as-he writes the program.

Overflowkg data searays at execution time may result in answers
without any indic~tion that the program is being used improperly.

Suppose the function CPLX (A, B) is to produce a complex result. The
first card would read

COMPLEX FUNCTION C P X (A, B)

In this case, do not forget to declare CPkX complex in the main program.

The Ranction subprogram is generally used when the subprogram is to
calculate a single result. The kigonometrie, exponential, and logarithmic
functions are examples of this t~ipe of subprogram. These are kept in a
FORTRAN library and a re automatically added to programs which reference
them. See your reference manual for a complete list of available functions
and the appropriate argeunents.

Answer: incorrect

~ ~ C . 1 0 Work exercise V. C in your workbook at this time.

V. D Subroutine Srnprograms

V.D.l The Subroutine Subprogram is used when several values a r e to be.
returned to the main ppogram.

V. D. 2 Since the subroutine name is not associated with a single variable, the
subroutine name is not associated with the type of any of the variables
involved. Any valid variable name is valid as a subroutine subprogram
name.

The subroutine name (is, is not) directly connected with the type of the
values being calculated ? Answer: is not

V.D.3 A subroutine, like a function, requires a name and can have up to 60
parameters. It differs from the function, however, in the fact that
subroutines can be written with no parameters.

A function must have at least parameter(s).

Subroutines may be written with a minimum of parameters.

Answer: 1

Answer: 0

V.D.4 The first card of a subroutine is written with the word SUBROUTINE
f~llowed by the subroutine name and parameter list (if any). For
example,

(Cont.)
FORTRAN COBMG FORM

will exchange the values A and B.

Parameters in the example above were used to pass information to the
subroutine. They were also used to pass information back to the

V.D.5 A reference to a submutine is always made in a separate statement.
For example,

FORTRAN STATEMENT

-will oat TT -- Q A 'I qnrl V = 712 fi

Answer: main program

A reference to a subroutine can not be made within an expression.
Ln fact, a subroutine reference must always be made in a separate

The reference to a subroutine always s t a r t s with the word CALL
followed by the subroutine name and the parameter list (if any).
The CALL statement may have a statement number and may use
continuation cards if needed.

Review the definition of RETURN in V. C . 5 . Look at SUBROUTENE
EXCHNG, V. D .4.]in the case of a subroutine, the logical flow of
the subprogram is terminated and control is returned to the next
sequential statement of the main program.

Example:
Main Program

CALL EXCHNG(X, Y)
10 Z = C*EXP(X)

Answer: statement

CALL EXCHNG(X, Y) references SUBROUTINE EXCHNG(A, B) .
The logical flow of the program is sent to SUBROUTINE EXCHNG.
RETURN terminates the logical flow in the subprogram and re turns
it to statement 10 in the main program.

V. E Available Functions

There a r e many functions which have been written by other pro-
grammers which a re available for your use. These functions
a re divided into two categories. One set is called in-line functions
and the other set i s called library functions. All functions in these
two sets a re referenced in exactly the same way, but there a r e some
differences which may be of interest.

The two categories of functions which a re available for your use a r e
and

V. E. 1 The in-line functions a r e not actually subprograms, but small sections
of computer instructions which the FORTRAN compiler inserts into
your program a t the place where the function i s referenced.

The computer code for a specific in-line function is placed in the
program every time a reference is made to that function.

Reference to an in-line function does not cause control to be passed
to a subprogram, but just adds computer instructions to the main
program. True or false ?

V.E.2 Library functions a r e actually subprograms which a r e available for
your use. A reference to any of these functions will cause the referenced
function to be taken from the library and placed in computer memory
whenever your program is being executed.

Answer: in-line functions
library functions

Answer: True

Since the available functions a re all referenced in the same manner,
it is usually not necessary to remember which functions belong to
what category. True or false ? Answer: True

V. E,3 To use the available functions, it is necessary that the type of
the actual parameters a r e correct. It is also important to
know the type of the result you will obtain. The other important
item is to be sure that you understand what the function does.

In using a function which someone else has written, you need to
know the definition of what the function does, the type(s) and
meaning(s) of the different parameters, and the of
the result.

V.E.4 We have discussed h-line and library function in general. We
will now discuss several of the most popular of these functions.

a.) There a re two in-line f ~ c t i o n s which take the absolute
value of a number. They a r e ABS(X) and IABSTJ) . They will
return the value of the argument whenever the argument i s
positive. They will return the negative of the argument when-
ever the a r e m e n t is negative.

Form Actual Parameter Type Type of Result Definition

ABS(X) real real lx l
IABS(J) integer integer lj I

Write a staLemed which will add the absolute value of x to the
absolute value of y and assign the result to z .

Answer: type

Answer: Z = ABSCX)+ABS(U)

V. E.4 b.) There a re ten in-line functions for picking a minimum or
(Cont .) maximum value from the parameter list. These functions may

have from two to sixty parameters in a particular reference.
For example, the statement

B =AMAXI(A, P, X, Y)

will assign B the maximum value represented by the set of values
A , P, X , andY.

The different functions for minimum and maximum a re the variations
on parameter type and result type.

Form Actual Param&er Type Type of Result

ANLAX1(X1, X2, . . . , Xn) real real

real

integer

integer

real

real

integer

integer

double precision

double precision

real

real

real

integer

integer

integer

integer

double precision

double precision

Write a statement which will assign the minimum value of the variables
I , J , and N to the real variable Y.

Definition

maximum value

minimum value

maximum value

minimum value

maximum value

minimum value

maximum value

minimum value

maximum value

minimum value

Answer: Y=MINO (I, J, N)

or
Y=AMINO (I, J, N)

V.E.4 c.) There a re two in-line functions which will perform modulo
(Cont.) arithmetic. These functions require two parameters and the result

is the remainder obtained by dividing the f i rs t actual parameter by
the second actual parameter.

Form Actual Parameter Type Result Type Definition

AWD(X1 X2) real real X1 modulo X2

NLOD(I1, 12) integer integer I1 modulo I2

Write a statement which will set J equal to the number of years since the
last leap year. Assume that the year is stored in variable IYEAR and the
year is between 1950 and 1990. Answer: J = 'MOD(TSIEAR, 4)

d.) Four other in-line functions a r e useful when working with complex
arithmetic. These a re used to combine real variables o r constants to
form a complex variable o r to form real variables from the different
parts of a complex variable.

Form Actual Parameter Type Type of Result Definition

AIMAG(C) complex real obtain the imaginary part of
a complex argument

CONJG(C) complex

CMPLX(X1, X2) real

REAL(C) complex

complex change sign of imaginary part
of complex argument (Conjugate of @)

eolnplex form complex number from pair
of real arguments (XI + iXZ)

real obtain real part of complex
arrmment.

Consider the following code:

FORTRAN CODING FORM

FORTRAN STATEMENT - - ,

The value of D after the above instructions is + i .

e.) The library functions are mainly the trigonometric, exponential,
and square root computations. For the trigonometric functions, all
angular arguments and results are in radians.

Answer: 15.6, 2.5

Form -
SIN@)

c o
TAN@)

TANH (X)

Actual Parameter Type

real

real

real

real

Result Type

r e a1

real

real

real

Definition

sine of X radians

cosine of X radians

tangent of X radians

Hyperbolic tangent of X radians

Form - Actual Parameter Type Result Type Definition

A L w X) real real natural logarithm of X

A LOG1 Ow) real real logarithm to base 10 of X

mP@) real real e to the X power

SQRTm real real square root of X

ASINm real

ACW(x) real

ATAN@) real

ATAN2e1, 3) real

real acs5n.e of X. The result i s in the
range C-v/2, n/21

real arccosine of X. The result is the
range LO, n]

real arctangent of X. The result i s the
range L-n/2, ~ / 2 1

real arcltangent of x1/x2. The result i s

in the range [0, 2n1

Most of these same functjions are also avail&le ffos double precision
and eonaplex eompuhtions. See your referenee mmml for a complete
list.

Work exercise V. E. iin your workbook at this time.

COMMON

I am sure that some of you are curious as to how information is passed to
and from subroutines which have no parameters. This i s accomplished
through the use of COMMON. Functions may also gain access to main
program variables through COfvlMON assignments .

V. F.2 Suppose the statement

1-. C for Comment
FORTRAN CODING FORM

I

appears in the main program. This tells the main program that this is
a variable which will probably be used by one or more subprograms. It
is then assigned the first location in the computer memory which is re-
served for common variables.

Common variables are assigned computer memory locations in the order
the variables appear in the COMMON statements. The statement
COMMON A, B will assign A to the first location in COMMON and B to
the location in COMMON.

COMMON A
COMMON B

will also assign A to the first location in COMMON and B to the second
location in COMMON.

Answer: second

If the main program has tAe statement

J- C for Comment
FORTRAN CODING FORM

i

FORTRAN STATEMENT

I

and a subprogram has the same COMMCN statement, then references
to the variables A and B in the subprogram will use the same values as
references to A and B in the main program. This follows from the fact
that the subprogram will assign the two variables to the same computer
memory locations.

Please notice that the order of assignment to the common area of
memory is the important factor and not the names of the variables. If
a COMMON statement in the subprogram had contained only the
variable B, would a reference to B in the subprogram use the value
of B in the main program?

Actually, the value of A from the main program would be used. An
illustration follows :

main program

COMMON A

COMMON B

common area subprogram

+ COMMONB

Answer: No

V. F. 4 In making variables available to subprograms through the use of
(Cont.) COMMON, it is the of the variable in the COMMON definition

which is important and not the variable name.

V.F .5 When a subscripted variable is put in COMMON, the entire a r r a y is
assigned to COMMON. F o r example, the two s ta tements

J-- C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT

k
will place A in the fourth location of COMMON.

The statements

- C for Comment FORTRAN CODING FORM

FORTRAN STATEMENT
2 5 0.

will place P in the location of COMMON

Answer: position

Answer: 31st

V.F.6 Often a main program has many variables, with different variables
being needed by different subprograms. T o avoid including all common
variables in all the subprograms, it is possible to define several common
areas. This is done by assigning names to the different common areas.

V. F. 8
(C ont .)

If the first character of a block common is a number, then all
characters in the name must be

Blank common and labeled common may be used in the same program.
A particular variable must only appear once in a COMMON statement.

Is it permissible to define the variable A in the common block TREND
and also in the common block T ?

Blank common and labeled common declarations can be made in the
same COMMON statement. The // indicates blank common.

In the COMMON statement

7 C for Comment FORTRAN CODIRG FORM

Answer: numbers

Answer: No

/Istab- j J
nent No!d FOXTRAN STATEMEhT
LL~Y i-

what variables a r e located (1) in the labled co on block, BLK1; (2) in the
labled common block, BLK2; (3) in blank common? Answer :

(1) A m , TEMP
(2) TABX, TABY
(3) X, Y, Z , A F , CIL, K

V. I?. 11 For convenience, it is permiss@& to declare the dimensions of a
subscripted variable in the COMMON or tbrps statements. This
means that if a variable must appear in a COMMON or type
statement there is no need to enter it again in a DIMENSION
statement. The dimension must be declared in only one' of the
three statements, COWON, type and DIMENSION.

This is illustrated in the following statement sets.

J- C for Comment FORTRAN CODING FORM

STATEMENT

In the first set, S is dimensioned in the statement.

In the second set, S is dimensioned in the statement.

In the third set, S is dimensioned in the statement.

Answer: C O m O N

Answer: DII\SENSI[ON

Answer: type

If a subprogram is to be used with many different main programs,
it is permissible to use integer variables in DIMENSION statements
withk the subprogram. These are called variable dimensions or
adjustabIe dimensions. The following matrix multiply subroutine
illustrates this technique.

FORTRAN.CODIN'G FORM

The values NMAX, MMAX, and KMAX represent the maximum
permissible d u e s of N, M, and K respectively. These maximum
values must be the same as the constants used in the corresponding
DIMENSION statements in the main program. The values of N, M, and
K may vary depending on the input data for a particular run. They must
always be the same or less than the maximum values used in dimensioning
the arrays. Specifically, when NMAX is 50, the value of N must never be
larger than Answer: 50

Block Data

Often it is necessary to set up tables of constants which are used by the
program. There are several ways to handle data tables but some are
rather inefficient. One way is to read in the values as input data. This
means that a deck of cards containing the table values must be submitted
with each compuder run. A second method is to write the constants into
the progrcam. For example,

C for Comment FORTRAN CODING FORM

\ ! i , , ~ i . , . l . , I I I i ~ ~ , , i I [, , i I { I I I , ~ , , I , i , , t I ,]

This method should not be used for a lan-ge number of values. There
a r e two reasons for the previous statement. The first asadvantage
is Llnat the amount of computes mennow required is twice that of other
meLhds. TMs arises from the fact that the copstanrls m s t be stored
and then moved to the array when execution of the program occurs. The
second disahankage is the computer time required to move the consta1I;s
to the array.

V.G.1 The block data subprogram places the constants in the appropriate array

(Cont. 1 locations at the time the subprogram is compiled. The only disadvantage
of this method is that the variables involved must be in labeled common.

V . 6 . 2 No computations a re permitted in a block data subprogram. In fact, it
is not assigned a name and no reference may be made to it.

All variables which a re assigned constants values in a block data sub-
prograin must appear in a statement. Answer: labeled common

V . 6 . 3 Type and DIMENSION statements must also be included when appropriate.
The actual assignment of constants to the different variables is accomplished
by the use of DATA statements. The simplest form of the DATA statement
i s the word DATA followed by the variables to be assigned values, a slash,
the values, then an ending slash. For example,

J-, C for Comment
FORTRAN CODING FORM

1

FORTRAN STATEMENT
5Q,

will set A to the value 3.6 and B to the value 4.7.

Different constant types may be mixed in the same DATA statement.
The constant type should match the corresponding variable type,
however.

If the type of the variable is integer, the corresponding constant
should be

Work exercise V. G. in your workbook at this time.

Answer: integer

V. N EQUWA LENCE Statements

It i s often desirable to have alternate names for the same storage
location. In FORTRAN, the vehicle which allows alternate names
of storage locations is the EQUWAEENCE declaration.

V, N. I The EQUIVALENCE declaration is coded as follows:
1

FORTRAN STATEMENT 1 5n'
I

L-1-1 1 i I I ! ! I
Each set of parentheses encloses the variables that share a storage
location.

In the above example, suppose A, B, C, D, M are all simple
variables. Which sets of variables share storage locations?

The order of variables within the parentheses is immaterial. Thus
the same result may be obtained from: EQUTVALENCE (M, C, D), (B, A) .
Notice that the variable set C, D, M involves both real and integer
variables. More about that later.

The EQUNALENCE declaration is a non-executable statement that can
appear m w h e r e in a propam or subprogram.

The EQUIVALENCE declaration is used more often with =rays than
with simple variables. Double precision and complex variables may
also be hvolved.

In earlier sections, you learned of three non-execuwle FORTRAN
statements that allow dimensioning of arrays. Nanae them.

Answer: A and B share one.
C, D, M share another.

Answer : COMMON, DmENSBON,

Arrays to be used in the EQUIVALENCE declaration must be
dimensioned in either a COMMON, DIMENSION, or type statement
in the same program or subprogram.

Entire arrays may be equivalenced, viz:
1 ,

FOSTRAN STATEMENT I
-- - - A 0

1 I I I 1 / E ~ Q ~ I ~ V , A L E N ~ C E ~ (1 ~ , , 1 ~ 1) I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ I /

This series of statements specifies that the array C will begin
at the same location as the array A. That is,

C(l) is the same as A(1)
C(2) is the same as A(2)

Complete the array through C(7) using l1 <=> l1 for "is the same as".

Remember that the array B immediately follows the array A in storage
when defined in COMMON. The first two locations of B were equivalenced
to the last two of C implicitly -- just because B follows A .

Answer: C (3) <=>A(3)
C (4) <=>A(4)
C(5) <=>A(5)
C (6) <=>B(l)
C(7)<=>B(2)

It is possible to equivalence arrays of different dimensions. Consider
the following example:

- C for Comment FORTRAN CODIXG FORM

?state- + FOZTEIAN STATS3C';EKT I x e n t ~ ~ . - c - I

C A

Assuming D, E , F, G are not complex or double precision, complete
the following tableau where " <=> ' I is "is the same as".

Answer:
D(1, 1) <=> E(1) <=> G(1)

A

-284-

We mentioned the notion of forcing an order on variables within a
program or subprogram. Certain restrictions have to be followed when
variables are in COMMON.

(1) Variables or arrays within COMMON cannot be reordered
by EQUIVALENCE. That is:

COMMON A, B
EQUIVALENCE (A, B)

is not allowed.

(2) COMMON should not be extended by EQUIVALENCE since
disastrous destruction of subsequent storage areas may result. In
other words, avoid things like:

COMMON /CQM~/ C, D(5)
DIMENSION E(6)
EQUIVALENCE (D, E)

Setting E(6) would produce a store in the location following /C0M2/
which might be another common area.

(3) Variables in different common areas may not be
equivalenced.

In addition to the above restrictions regarding COMMON, one
general restriction should be observed.

(4) Equivalenced arrays must be consistent, You can't
have something like:

V.H. 5 Why not?
(Cont. p

Answer:

The first parentheses require
(a) A (1) <=> B(1)
(b) A(2)<=>B(2)

The second require
(6) A(3)<=>C(1)

The third require
(d) B(2)<=>6(1)

@) and (d) states that A(2)<=>B(2)<=>d=(1)
(6) states that A(3)<=>e(l)
C(l) cannot be both A(2) and A(3)

In the following set of statements, each of the equivalences (a), (b),
(c), (d) violates one of the restrictions. Write the number of the
restriction that has been ignored next to the equivalence:

7 C f o r Copment FORTRAN CODING FOISM
I

l p.2~2t+- P . 4 1

FOZTXAK STATEMENT iz1e2t~c3.Z
I

\L - ,;-
--- . :a .- ! ----v- -- - 5!i

V. H. 5
(Cont.) a.

Answer:

(a)-(2) : / C O M ~ / is only thirteen locations
long, thus, there is no place in COM3 for
for the f i rs t six locations of E . We've
extended COM3 backward which could be
dangerous.
(b)-(3) : Both COMMONS have been
equivalenced
(c)-(4): according to the parentheses (E, C),
D(1) should be E(19). The second parentheses
contradicts this
(d)-(1): can't reorder COMMON

V. H. 6 As the final step let's see what happens when a real variable is
equivalenced to an integer variable. Actually nothing very exciting
occurs. You are allowed, however, to address the same variables
as integer or real depending on the variable name used. The
EQUNALENCE statement does not cause any real-integer conversion,
but the normal conversion rules apply in computations.

Suppose you wanted to read a ten word binary tape record into core and the
first, fourth, sixth, and tenth words were integer. You could do the
following:

DIMENSION PUTIN(10) , INPUT(10)
E Q W A L E N C E (P U T m , INPUT)

and read the record into PUTIN (or INPUT)

Which values of PNPUT would contain integer variables ?

Which values of PUTIN would contain integer variables ?

You would have to be careful in referring to the variables.

If you said X = INPUT(2) , a conversion of an already real variable
into a real variable would be made-- erroneously. Careful use of mixed
mode EQUIVALENCE can, however, facilitate programming, especially
in applications similar to the example. ~nput/output records often have
integer values representing checksums, identsiers and the like.

Work exercise V. W in your workbook at this time.

Answer: I'NPUT(l), INPUT($),
INPW(G), INPUT (10)

Answer: PUTIPJ(l), BUTIPJ(4),
BUTIN(G), PUTIN(10)

V. I EXTERNAL Statement

The name of a function or subroutine subprogram may be used as an
actual parameter in a calling sequence. This is possible through the
proper use of the EXTERNAL statement.

V. I. I Consider the statement

CALL ADMAN (FLGS, X, Y, Z)

where FLGS is the name of a subroutine. Used in this mamer, FLGS
looks exactly the same as X, Y, and Z. Therefore, it will be consid-
ered a variable and not a subroutine. The use of the statement

EXTERNAL FLGS

prior to the statement

CALL ADMAN (FLGS, X, Y, Z)

will identify FLGS as an external name (i. e., a function or subroutine
subprogram name).

A subprogram name may be placed in a calling sequence if the name
has been included in an statement.

V. I. 2 The form of the EXTERNAL statement is the word EXTERNAL
followed by the names of the subprograms which are to be used as
actual arguments in some calling sequence. The subprogram names
a re separated by commas.

Write an EXTERNAL statement which declares SIN, COS, and TAN
as subprograms,

Answer: EXTERNAL

Answer:
EXTERNAL SIN, COS, TAN

It would be easy at this point to confuse the use of a subprogram
name in a calling sequence with the use of a reference to a particular
function in the calling sequence. To clarify this point, examine the
following statements which are contained in the main program.

I
h3
w
o C for Comment FORTRAN CODING FO3M

t istake- $ I

FOXTRAN STATEMEKT 1;cnt So.c/ I .,. u 'i -- - . T - 5Q

Here the first statement defines FLGS and CRAZ as external names.
The third and fifth statements call ADMAN which expects a subpro-
gram entry plus three variables as parameters. The fourth statement
calls GCNT which expects three variables in the calling sequence.
Thus, FLGS(R) is an arithmetic expression which is evaluated before
the subroutine is called. The result of the function FLGS(K) then
becomes one of the actual parameters.

V. I. 3
(Cont.)

Consider the following code:

- C for Comment FORTRAN CODIXG FORM
,I I

['.Ttzte- 4 FOXTRAN STATEMEKT I I
Ler , tsos +___:s 1-;7 5&

i

Since FNCT is not dimensioned, it will be recognized as a function.
Its appearance as a formal parameter, however, will mean that
the function entry location is supplied by the main program. This
means that the function which is actually used in performing the
calculations is whatever function name appears as an actual
parameter in the call to ADMAN.

Again consider the main program code which was seen earlier.

1 1

I , , I. I..;-- %?.J-L-L TER 9 4 iFILIGIS,y ICIR,A?l ; _ L - ~ I . . - L I I - ~ I I - 1 I I t I I ! ' I I ! 1
1 -'-.A- i DIMENSION X (1 0 0) B (3 0 0) , C (5 0) , P (1 0 , 0) , ~ (! 3 0 , 0)
I I - . . ! - 1 . 1 ;. J-..: I.-I-III-LIJ-LUI 1 I I 1 I I 1 1 1 1 1 I I 1 I 1 1 1 I I I . 1 1

L , I _ ' l l ! 8 ! (1 5 1 ~ l ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : t I I l i l ~ , I i u I I l I I I I I I

; / C A L L ADMAP (FL,GS, X , , Y , I
1 - I ! I I I I I I I l I 1 I I ~ I I I I ~ I I I I ~ ~ ! ! I ~ ~

i I

y; UI-~-~

CALLI GcNT, (FLG,s (K),,!x, Y) , , I ! ! I I , ! I) t [I

ibGp: (A , , , : 1 : 1 1 I I I , I I I t l~ I ! ,

V. I, 3 The third statement will call ADMAN and indicate that function
(Cont.) be used in the calculations to be performed. The

fifth statement will use function in the same manner.

V. I. 4 Work exercise V. I in your workbook at this time,

Answer: FLGS, eRAZ

V. J Exercise V. J in your workbook is a review of Part V. Work
exercise V. J at this time.

VI ,A Introduction

In part W, you learned about the conversion types available for real, integer, complex,
and alphanumeric quantities. These were Ew .d, F'w .d, Iw and wH. The individual format
specifications are sufficient to read data, input headings and general information, and print
results for the average FORTRAN program.

In this chapter, input/ouQut is extended to include topics beyond the minimum FORTUN
capability. We will study conversion types for double precision and logical variables, scale
factors, formats and bchniques for character m d p d a ~ o n , sbtements for rearranging and
changing information in storage, input/ouQut with NAME LIST, and other features for more
flexible programming.

V1.A.f Dw . d, Input and a t p u t

Before reading the following sections on double precision input and output, i t is swgesbd
that you review the discussion of the double precision mode in II.E, and Ew.d conversion
in nT , E (Output), TV . F (Input) .

VH.A.2 Dw .d conversion is used for input and output of double precision quantities. A double
precision quantity is represented and used like a real quantity but has more digits. Thus
Dw .d conversion is similar to Ew .d conversion, except that (1) D replaces the E in the
format specification, (2) two memory locations are allocated for each double precision
quantity, (3) the list variables must be double precision names. Both w and d have the
same meaning.

Example :

DOUsLE EXTEND(50)
10 FORMAT (4D18.7)

FEAD 10, EXTEND

In the example above, EXTEND is an array name typed as double precision. The number
of double precision elements in the array is 50, but the number of memory locations
reserved is 100.

m .a Input

The field occupies w positions (card columns) of the input record, and must be wide enough
to contain the input quantity. Since the value on the card is converted to double precision,
both D and E are acceptable as the beginning of the exponent subfield; e . g . , the Dw .d type
number (-6228,43[)5) has an integer, fraction, and exponent subfield.

Examples :

(f 1 DOUBLE PBE CISION A, B , C
READ G,A,B,C

hput Card
1

VI.A.3 How many storage locations are allocated for B in
(Cont .) the example above ? Answer: 2

(2) DOUBLE W(4)
READ 15, W

15 FORMAT (4D18.7)

Input Card

Which of the quantities shown on the input card above are
acceptable as double precision input ?

After input of the value for W(4), what value will be contained
in storage ?

Which subfields are present in the data for W(1), W(2), and W(3) ?

Answer: a l l

Answer: .0000025

Answer: Integer, fraction,
exponent

Answer: Integer, exponent

Answer: Integer, fraction

The form of output for the D field specification is:

+a,aa. , . ,a teee 1 0 0 < _ e e e ~ 3 2 2 -

+ a.aa... .aD+ee 0 L e e 2 99 -
where the "a's" are the most significant digits of the integer and
fractional parts, and the "e's" a re the digits in the exponent, If
the sign is positive, the first position is blank. The field occupies
w positions (print positions) of the output record. It must be wide
enough to contain a sign, decimal point, and subfields of the output
form.

Let's consider example (2) in section A .3 and assume that the input
card has been read and values stored. The stored values printed by
a D37.29 format specification would be :

Variables in the double precision mode are significant to approximately
29 digits. On output, part of this significance may be lost in the output
conversion routine, and digits printed beyond the 28th place may not be
reliable .

VX.A.4 In the example above, the last two answers are not exact. Consider
(Cont.) the format specification D37.29. By this specification 30 digits

were printed, and the limit of reliability was exceeded by two places.
If .000025 had been printed by a specification D35.27, the last answer
would have k e n

In most cases you will not print the maximum number of digits, but
res t r ic t your output to a more suitable format such as the one in the
example below.

The stored values printed by a D15.7 specification would be :

From the examples shown, note that Dw .d conversion and Ew .d
conversion follow the same general rules,

Work exercise VI .A in your workbook at this time.

Example,:

In core storage A = 732.962, B = -24.75, and C = 1.7532.
With an output specification of G9.4 the printed values appear
as follows :

The field width i s l e ss than d + 6. "B" cannot be output
effectively because there i s not space for the sign.

d Gw. d uses the E conversion when N > 10 .
You will recall the E conversion requires w 2 d+7.
The same requirement is imposed upon the G specification.

In the example above if the output specification were G9.2 the
output would be :

A = b7.33Et02, B = b-25.bbbby C = bbl. 8bbbb

For the quantity 76543.21 which conversion type would be used for the
following Gw .d output specifications ? What would the output look like ?

Answer: A. E bbbb8E+04

B, F b76543.2bbbb

C . E bbbb7.65E +04

VI.B.3 The answers to the questions above are obtained as follows:
(Cont .)

A. N = 76543.21 G9.0 w = 9 d = 0
0

w > d+7 but 76543.21 > 10

Therefore, the E specification would be used. (E9.0)

w > d+ 6 and 76543.21 < 10
6

Therefore, the F specification is used. (with d significant figures)

C. N = 76543.21 G12.2 w = 12 d = 2
2

w > d+ 7 but 76543.21 > 10

Therefore, the E specification i s used. (E 12.2)

VI.B.4 Work exercise VI. B in your workbook at this time.

VI.C Lw , Input and Output

VI.C.l The Lw specification is used for transmission of logical quantities,
Again, w specifies the total width of the field. On input, the field
is considered true or false if the first non-blank character in the
field is T or F, respectively.

Three cards have punched on them in the first eight columns

What would be the value of the logical list item if these three cards
are read by L8 specification? A .

V1.C .2 Should the input field be entirely blank, i t is considered false.

Using an L6 specification, what value would be input for

A 0 b ~ b b b b

B . bbbbbb

C . bbbTbb

Answer: A . True

B. False

C. True

Answer: A . False

B. False

C. True

VI.C.3 When logical variables are to be output by an Iiw specification,
a T or F i s output for true or false, respectively, right
adjusted in a field filled with blanks.

If variable MAYBE is false, what i s output for L2 specification?

Work exercise VI, C in your workbook at this time.

Answer : bF

Scale Factors

Another format specification is the scale factor, nP . This speci-
fication permits scaling of values during I/O when used in conjunction
with certain types of conversion.

For input, scale factors have effect only on F-conversion. For output,
scale factors may be used with the D, E , F, and G types of 1/0 con-
version. The effects obtained from the use of the scale factor depend
on the type of conversion and whether the operation is input o r output.

The scale factor may be used with , , - o r - conversions. Answer: D, E , F, G

The effect of the scale factor will depend not only on the type of conversion,
but also on whether the operation is o r Answer : input, output

A scale factor of zero is assumed if no value is given,

Output

The format specification, nP , may be used a s a separate entity in the
FORMAT state'ment o r i t may appear as a prefix of any D, E, F, o r G
conversion. An important thing to remember is that once a scale factor
is used, i t will remain in effect for a l l D, E , F , and G conversions following
the scale factor in the same FORMAT statement until a new scale factor is
introduced.

To nullify the effect of a scale factor, a subsequent scale factor of zero in the
same FORMAT statement must be specified by OP.

A scale factor is effective for the output of only one value. True o r false ?
Answer : False

The scale factor may be entered in any of the following ways:

where -8 S n 2 8

In the FORMAT statement

20 FORMAT (2P, 312, F20.6)

a scale factor of 2 is established. Since scale factors do not apply
to the conversion, an equivalent statement would be

Mow consider the effect of the scale factor, n, on the values being
conveded, The following table illustrates this effect when used with
the different conversion types.

F Conversion

Input The input value is multipP4ed by during conversion.
For example, a scale factor of one will cause a card
value of 2.367 to be stored in the computer a s -2367.

Answer: I

V1 .D .4
(Cont .)

Output The value in the computer is multiplied by l o n before
,being transmitted to the I/O unit. For example, a
scale factor of three will cause the value 2.367 to be
printed as 2367.0.

E and D Conversion

Input The scale factor is not effective in this c a s e ,

Output The value is converted with n+l digits to the left of the
decimal point. The exponent is adjusted so that the
value is not changed. For example, the value 23.68796
i s to be printed using E conversion. The following table
illustrates the effect of different scale factors.

Specification Printed Value

G Conversion

Input Same as F conversion.

Output The effect of the scale factor is suspended when F-type
conversion occurs. The scale factor is effective when
the magnitude of the data requires that the E-type conversion
be used. In this case, the effect is the same as for E conversion.

VE.D.4
(Cont .)

Provide the correct values for the table b l o w .

Specification - I/O Computer Value External Value

2PF10.3 input 326.475
-1PF10.3 input 326.475
1PF10.3 output 3 .2647 5

-2PF10.3 output 3.26475
OPF10.3 output 3.2647 5
2PE12.5 input b3.264753+00

-1PE10.4 output 3.2647 5

Example :

Answers :

DATA K,A, B9C/27, -932.096, -.0075804, .55361/

(No scale factor, E-conversion) (Printed Output)

PRINT 102, K,A,B,C 27 -9.3210Ec02 -7,58043-03 5.53613-01
102 F O R m T (13, 3E12 -4)

(Scale fac tor, 1P, E -eonversion)
PRINT 103, K,A,B,C 27 -93.2096Et-01 -75.8040E- 04 55.3610E-02

103 FORMAT (13, 1P3E12.4)
(No scale factor, F-conversion)
PFe;[NT 104, K,A, B, C 27 -932.096 -. 008 "554

104 FORMAT (13, 3F11.3)
(Scale factor, 1P, F-conversion)
PRTNT 100, K,A,B,C 27 -9320.960 -.076 5.536

T (13, 1833'11.3)
(Scale factor, - I F I F - conversion)
PRTNT 101, K,A,B,G 27 -93.210 - .001 -055

101 FORNEAT (13, -1P3F11.3)

VI.D.5 Example :
(Cont .)

A r r a y AA contains numerical values of a physical quantity that
5 i s usually expressed a s a number x 10 .

DIMENSION AA(5)
DATA PA/-932,096, -600.47, 1000.03, 24575., 738407 ./
DATA K, B, C/27, -.0075804, .55361/
(Scale factor , -5P, used, cancelled, and reused .)

PRINT 200, K, AA(l) , B, C, (AA(I), I=2, 5)

200 FORMAT(I3, -5PF10,3,6Kxl0**5, OPE12.4, E 1 2 . 4 / (- 5 ~ ~ 1 3 . 3))
(Printed output)

VI.D.6 Work exerc ises VI .D in your workbook at this time.

W .E Group Spcifications

V1.E .I Groups of specifications may be repeated by enclosing the group
in a set of parentheses, and preceding the set by the integer con-
stant required. Should it be desired to print out an integer, then a
real number, followed on the same line by another integer and real
numkr , the spcifications might be

n FBBNLAT (2414, 2X, E15.7, 2x1)

which is ewivabnt to

n FOWNIAT .(I4, 2X,E15.7, 2X9P4, 2X,Ef5.7,'2X)

m a t is the e q ~ v a l e n t form of

n FORM[AT (2XF5,19 2XF5.1, 2XF5.1, 2X)

W.E .2 'PPnere is another way to cause specifications b be repeated: the
h e r m o s t set of swcifications in a F O R m T s b k m e n t which is
enclosed in parentheses without a repetition factor precediw it
will be repeated as often as necessary to saeisfy the corresponding
I/O list. This set is known as an unlimikd group, m d m y specifica-
tions to the right of an unlimited g o u p will never be reached.

Answer:

n F O R U T (3 (2XF 5, I), 2X)

VI.E .2
(Cont .)

Which a re the unlimited groups in the following:

A. n FORMAT (15, 2E10.4, (215))

B. n FORMAT (2 (3 ~ ~ 1 0) / (1 ~ ~ 1 5 . 5))

C, n FORMAT (2 (F7,2), 3(14), (E10.6), 14)

V1.E . 3 The right parenthesis of an unlimited group acts a s a slash; that
is, when the specification is repeated, i t is on a new line o r card.
The specifications

n FORMAT (315, (F10.2))

if used to print out ten l ist items would cause four items to be
printed on one line in 315, F10.2 format, then the next six to
follow, each on a new line in F10.2 format. A total of seven
lines would be printed.

How many lines would be required to print out a l ist of ten items
by the following formats ?

A. n FORMAT (14, 2X, 413/(1X~15.7))

B. n FORMAT(I4, 2X, 413, (1XE15.7))

C. n EORMAT(I4, 2X, 413, 1X,E15.7)

VI .E .4 Note that in part C, the entire s e t of format specifications forms
the unlimited group.

Answer: A . (215)

B. (1XE15.5)

C. (E10.6)

Answer: A . 6

B. 5

C. 2

V1.E .5 Work exercise VI .E in your workbook a t this time.

L
..

C
 .:I

C
t.

111 13

\

0
2

-

o
y

-

0
E

-

o
c

-

0
Y

.
C

o

c
-

o

x
-

0

0
-

0

2
-

0

x
7

o

z
-

0

%
-

0
%

-

o
t
-

o

y
-

0

"
-

o
z

-

0
s

-

0
B

-

o
z

-

0
%

-

0
2

-

0
:
-

0
 r, -

0

yI -

0
%

-

0
 2

 -
0
 R

 -
0

"
 -

0
 G
 -

0
0

-

0
 rn -

0
s

-

0
0

-

0
 Y

) -
0
:
 -

0
 q
 -

0
"
 -

0
 z -

0
;
-

0
:
-

-
2
-

0
'

D
-

o

c
-

0
 :q -

o
x

-

o
z

-

0
:
 -

0
 *. -

O
F

-

0
,

O
-

0

0
-

O

R
-

0

:
-

0
 z -

0
%

-

0
:
-

o
c

-

0
 z -

o
r
.
-

0
 g
 -

O
F

-

o
w

-

o
r

-

0
-

7

0
Y

I
-

0

"
-

o
?

-

0
=

-

0
 - -

0
 "

 -
I

0

rr -

O
D

-

I
0

-
7

0

'
0

-

I
o

m
-

0

rr -

I
0

0
 -

o
n

-

=
-

-

[I)
.A

Q

Y

O
s
::

8
0

9

aag
gga
P

[I)

3

Aw, Output

Aw output converts internally-stored display code to FORTRAN
characters for printing o r punchilig. If w is greater than 10,
the 10 characters will be output right adjusted and the field
filled with blanks. If w is less than 10, the left-most w
characters will be outp t .

Stored in the computer word is

What would be output for specification

Work exercise V1.G in your workbook a t this time.

Answer: A. bbbSEPTEnlBER
B. bSEPT
C. bSEPTEMBm

V1.H Rw , Input and Output

VI.H.1 Rw conversion on input reads FORTRAN characters from a card
and converts them to console display code for storage in the computer.

For input, when w is less than 10, the quantity will be right adjusted
and the remainder of the word filled with octal zeros.

If the punched card has CENTIMETER punched in columns 1-10,
what will be stored in the computer if the card is read by an R4
specification ?

VI.H.2 Rw output converts internally-stored display code to FORTRAN
characters for printing o r punching.

For output, when w is less than 10, the rightmost w characters
will be output.

If the computer word contains

03051624111505240522
- -
C E N T I M E T E R

what will the output be for specification R5 ?

Answer: 00000000000003051624 P

G E N T

Answer : ME TE R

vI.EI.3' Work exercise VI . K in your workbook a t this time.

I7-I Ow, Input and Output

VI ,I. 1 Octal integers may be input by the 0 conversion. The field width
is determined by w which must be <_ 20.

Example :

READ 7, PSI, THETA , OMEGA
7 FORMAT (3010)

The following card contains the data which is read by the above
READ statement.

How will the values appear in storage ? Answer :

A* PSI

B, THETA

C. OMEGA -

Vl.1.2 Octal integers a r e output by the O conversion with field width w.
If w 5 20, the rightmost w octal digits will appear; if w > 20,
the number will be right adjusted and the field filled with blanks.

Wow will the quantity 72316400450511314277 appear output by Answer : i

VI.1.3 Negative numbers will appear in their 1's complement form under
0-type conversion, F o r example, if the quantity - 3 is punched
on a card to be read under 0-type conversion, i t would appear in
s torage as 77777777777777777774

What would the internal number look like for -265 read by 0 4
specification ?

VH.I.4 Work exercise VI.1 in your workbook a t this t ime.

Answer: 77777777777777777512

Variable Formats

In section JY you learned to write FORMAT statements. As you
remember, these statements are not executable. That is , they do
not cause any computer operations to be generated. They are used
only as a source of information for the 1/0 statements. In this
section you will learn to read this information into the computer
just as you would read values for different variables.

VI. J. 1 The information in a FORMAT statement is stored and then inter-
preted at the time the I/O takes place.

A FORMAT statement is not It is used to supply
information for statements.

VI. J. 2 The information from the FORMAT statement which is stored begins
with the first parenthesis after the word FORMAT and ends with the
last parenthesis in the statement.

What information is stored from the following FORMAT statement ?

FORTRAN CODING FORM

Answer: executable
Answer: I/O

Answer: (I H l , IOX, 13)

VI. J. 3 This information is stored in the computer in console display code.
Thus, each character including blanks requires six binary digits for
its unique representation.

Since each computer word contains sixty bits and six a re required for
each character when represented in the console display code, each
computer word can contain as many as characters.

VI. J. 4 Suppose that the characters (1N1, 10X, 13) a re punched in the first
twelve columns of a computer card. These characters may be read
into the computer in console display code by reading two variables
according to the format specifications (A10, A2).

Information may be read into the computer in console display code
by use of the format specification.

VI. J. 5 You now know two facts which a re necessary to the reading of formats
a t execution time. These are:

1. The information contained in a FORMAT statement is stored
in console display code and is not used until the I/O takes
place.

2. &formation read into the computer according to the A
format specification is stored in console display code.

Answer: 10

Answer: A

VI. J. 6 When a format is required, an I/O statement usually references
the FORMAT statement by its number. However, the I/O state-
ment may use the name of an array instead of the FORMAT state-
ment number. When this is done, the I/o statement will assume
that the array contains the I/O format specifications in cons ole
display code.

EXAMPLE:
READ FMT, X, A, B, C

FMT is the name of the array which contains the format specifications.

In most cases, the I/O statement refers to a particular format by
means of the associated with the format.

When an array contains the format specifications, the reference to
the array in the I/O statement is not required to be the first location
in the array, but must reference the start of the format specifications.

The format reference in an I/O statement may be either a statement
number or an

Answer : statement number

Answer: a rmy name

Format specifications read in at execution time are relerred
to as variable formats. This means that the formats may be
changed on any gi&n run. The following will illustrate how
variable formats a re used.

FORTRAN CODING FORM

The first card read must contain format specification in columns 1
through . The specifications must begin with a
and end with a . These specifications are then used to
read the values of the variables ' -7

and Answer: 50
parenthesis
parenthesis
A, B, C

z
$

b
 s Q

)
k

8 Erc
cd
.c

,
d
.

s *
g

i
ii

s
s

9

3 .s
Q

)

$3
-4

Y

I
0

3
rn
Q

)
4

8 g
8

"
3

X

a,

B
E

Q

)

3
3 k FZl

M
oo'

a
d

.-
W

$

4

*
o

a
"

a"
g.9

u
e

VI. K ENCODE/DECODE Statements

The use of formatted I/O statements provides conversion of data
from binary to console display code on output and the reverse conver-
sion on input. The use of ENCODE/DECODE statements permit the
same conversions, but the results remain within the computer memory,

VI. K. 1 The ENCODE statement has the form

ENCODE (N, I, ALPHA) LIST

where
N is the number of six-bit console display code characters

in each resulting record. This value may be an integer
constant or a simple variable.

I is a format statement number or an array name which
contains the format.

ALPHA is the beginning location where the converted information
will be stored.

LIST is an I /8 list.

For -example,

DIMENSION AMAT(5), K(2)
ENCODE (20, 5, AMAT)K

5 FORMAT (219)

will convert the two integer values in the K array to 20 characters
in console display code. This representation of the values is then
stored in AMAT(1) and AMAT(Z), ten characters in AMAT(1) and
ten characters in AMAT(2). The last two characters in AMAT(2)
will be blanks since the format only specifies 18 characters.

VI, K. 1 Consider the statements
(Cont.)

C for Comment
FORTRAN CODJXG FORM

.t
Stzte- :;I'
/EF':"O!" FORTRAN STATEMENT
, 5 F 1 7 - .-

I
5Qi

Each record of converted information will contain characters.

There will be records generated.

The remainder of the first record will be filled with characters.

The second record will contain values from the array TABLE.

Answer: 30

Answer: 2

Answer: blank

Answer: 2

VL K, 2 In the previous code, there are two records generated because of
the slash in the FORMAT statement. Since the FORMAT state-
ment requires only one value for the first record, the value used
is TABLE(1). If the FORMAT statement requires fewer characters
than the number called for in the ENCODE statement, blanks are
added to meet the requirements of the ENCODE statement. Further,
a new record is always started at the beginning of a computer word.
Therefore, when the number of characters specified by the ENCODE
statement is not a multiple of ten, enough blank characters are
added at the end of each record to complete the computer word.

If the FORMAT statement requires twelve characters and the ENCODE
statement specifies fifteen characters, blank characters a re
required to complete the record. Since fifteen is not a multiple of
ten, blank characters are needed to complete the last computer
word.

VI. K, 3 To illustrate the use of the ENCODE statement, assume that:

Answer: 3, 5

These values will now be converted to console display code and stored
into the array B according to a specified format.

VI.K. 3
(C ont.)

Case 1. DIMENSION B(4)
ENCODE (38, 10, B) A(1), A(2), Z, ZB, K

10 FORMAT (F7.4, E12.5, F8.3, F7.2, 14)

After execution of the ENCODE statement, the B array will contain
the following cons ole display code characters.

word 1

word 2

word 3

word 4

Case 2. ENCODE (26, 20, B) ZB, K
20 FORMAT (~16.4, no)

After execution of the ENCODE statement, the B array will contain
the following console display code characters.

word 1

word 2

word 3

In both cases, notice the correspondence between the characters
stored in the B array and the characters which would be printed
if the same variables were printed using the same FORMAT
statement.

VLK.4 The DECODE statement takes the console aisplay coae mrormation
which begins at a given location and assigns this information to the
list variables according to a given format specification. For example,

C f o r Comment
FORTRAN CODING FORM

,I 1

.ZS tare- '9
/pen: So.6, FORTRAN STATEMENT 1

5o.j I__- , a _ L , Y - - --

I A = 1 O,HTESTI1 2 78 l10 I
* _ L I _ ~ _ L / _ L I I , I l I I I I I I I I I I I

I
II-4

i IDECQ,DE (1 01, 5 , A) ,B , K , + I

_ ! - l l i . - l L - 1 - I - L 1 I I I I I I I I I I I 1 I I I ! l I I I I I I I I I I I I I I ! I 1 1 1 /

will set B = TESTbbbbbb in console display code
K = 1278 in binary (integer)

and L = 10 in binary (integer).

-character record is being decoded. In this example, a
This record starts at location . In fact, it is completely
contained in location A. Answer: 10, A

Consider now the same two cases which were used in V1.K. 3. This
time we will start with the console display code characters in the
B array and DECODE the information back to numerical values.
Notice that the values obtained will not be the exact values we started
with. This is due to the rounding and truncation which occurred
during the ENCODE process.

Case 1. B Array

word 1

word 2

word 3

word 4

DECODE (38, 30, B) A@), A(2), Z , ZB, K
30 FORMAT (F7.4, E12.5, F8.3, F7.2, 14)

This will convert the characters in the B array according to the
format specified.

Compare these values with t he 'c~aliiwc i n TTT K .?

VI. L. Unformatted 1/0 (binary)

When writing numeric information on the printer, the binary values
in the computer must be converted to console display code according
to certain format specifications. Numeric values entered on the card
reader must also be converted according to format specifications.
Unformatted 1/0 makes it possible to move values between the computer
and certain peripheral units without any conversion.

V I . L . l Suppose that one program is to compute values which will be used as
input to some later program. If a large number of values a re in-
volved, they should be written on magnetic tape.

One way of saving values which have been computed is to write them
on

VI. L.2 A s was mentioned in part IV, formatted information may be written
onto magnetic tape. When it i s formatted, the conversion must take
place both on output and then again when the tape is used as input to
another program.

Answer: magnetic tape

The use of unformatted I/O saves conversion time on both
and Answer : input, output

VI.L.3 The use of unformatted 1/0 when applicable eliminates the loss of
accuracy which often occurs during conversion.

Unformatted I/O preserves the complete sixty-bit word as well as
reducing computer Answer: time

VI.L.4 Unformatted 1/0 can be used with any peripheral unit which is
capable of storing the entire sixty-bit computer word. These
units include magnetic tape, disks, drums, and other special
storage devices.

Unformatted WRITE statements cannot be used to output information
on the

VI.L.5 Statements for reading o r writing unformatted information a r e
similar to formatted reads and writes. In the unformatted case,
the reference to the format is omitted. For example, where "i"
is the unit number and "nfr is the FORMAT statement number,

READ (i, n) LIST
becomes READ (I) LIST in the unformatted case.

Write the statement which will output the f i rs t twenty values from
the a r ray AMAT. Write these values on 1/0 unit 10 in unformatted

I form.
W
t\3
cD
I VI.L.6 The type of variables being transferred is not important to the 1/0

statement since i t moves the words without disturbing the binary
configuration. If the values a re used a s input to another program,
it is important to make sure that the values a r e considered to be of
the same type as they were in the original program.

If the second word written is real and the third word written is integer,
the second and third words should be treated a s and
respectively when this information is read into the computer.

Answer: printer

Answer :
WRITE(IO)(AMAT(I),I=l, 20)

Answer: real, integer

VI.L.7 Work exercise VI. L in your workbook a t this time.

Data Files

Let us define a logical record as the information read o r written
by one READ or WRITE statement. A data file will mean a set of
logical data records .

A data file will normally contain data records which are related
in some manner, but the collection of records which constitute a
file is completely arbitrary.

One WRITE statement creates data record on tape or
other output device.

Data files are created by writing an end-of-file indicator a t the
place you wish to end the file. This is accomplished by the
statement

END FILE i

This causes an end-of-file to be written on unit i. Sectims V1.M. 6,
7 , and 8 will explain the usefulness of the end-of-file indicator.

The statement

- Z -?or Comment FORTRAN CO3iNG FOSM

i : ;END ,F I LE , 7
~ ~ i . . i - : - : - l : i i , I I I ~ I I I I ~ I I I I I I I I I I I I I I ! I I I I ~ I ~ I I I I ! I I I ~

will cause an end-of-file indicator to be written on I/O unit

Answer: one

Answer: 7

VI.M.3 Before writing your f i rs t data record onto a magnetic tape, make
sure that the tape i s positioned at the beginning of the tape (load
point). This is accomplished by the statement

REWIND i

where i is the 1/0 unit.

The use of the REWIND instruction before reading a tape will
insure that the (first, last) record on the tape will be
read by the f i rs t READ statement .

VI.M.4 The statement

BACKSPACE i

will cause the tape to move back one record from i ts present position.

If the read head of tape 8 is positioned immediately at the beginning
of the fourth record, the execution of a BACKSPACE 8 instruction
will position the tape such that the read head is immediately at the
beginning of the record.

VI.M.5 Both the REWIND and BACKSPACE statements a re ignored if the
tape is already positioned at load point (beginning of the tape).

The REWIND statement causes the tape to rewind until it reaches
the

Answer: f irst

Answer: third

Answer: load point

VI.M.6 When reading information from tape, it is desirable to know when
the end of a data file is reached. This is determined, of course,
by the presence of the end-of-file indicator.

The end of a data file is signaled by the reading of an
indic at or.

VI.M.7 After a READ statement, there a r e three different statements
which may be used to determine if an end-of-file indicator was
read. They are:

I F (ENDFILE i) N1, N2
I F (EOF, i) N1 , Nz
IF (IOCHECK, i) N1 , N2

The i is an I/O unit and N1 is the statement number to which control
is transferred if unit i read an end-of-file indicator on its last read
operation. Control goes to N2 if no end-of-file was found.

Write a statement to read an unformatted record from tape unit 9
in array AMAT. Assume that AMAT has been dimensioned 100 and
that the record length on the tape is 100 words.

Write a statement to determine if the above READ statement actually
read the data record o r encountered an end-of-file indicator. Go to
statement 10 if a data record was read. Go to statement 20 if an end-
of-file was encountered.

Answer: end-of-file

Answer:
READ (9) (AMAT (I), 1=1 , 100)

or IREAD (9) AMAT

Answer:
I F (EOF, 9) 20, 10

o r I F (ENDFTLE 9)20, 10
or IF (IOCWECK, 9)20, 10

As a review, wri te the six new statements which have been
introduced in this section.

Work exercise V1.M in your workbook at this time.

Answer:
END FTLE i
REWIND i
BACKSPACE i
I F (ENDFILE i) N1, N2
IIF (EOF, i) N1, N2
I F (IOCMECK , i)N1, Ng

NAME LIST Statement

A list of variables for input or output may be assigned a name,
thus, the term NAME LIST. The assigned name may later be

used as a shorthand method for referencing all variables in the
list.

The form of the NAMELIST statement is

NAMELIST/NAME~/~~, a2, . . . , aj/NAM~2/bl, b2, b3, . . . , b n

where the ai and bi are simple variables or array names.

I
W
W

For example,
rP
7 C for Comment

FORTRAN CODJNG FORM

[!state- I FORTRAN STATEMENT 1

50 -

A I (, ~ I) I ~ I Y (, ~ , O I) ~ ~ P I (I ~ ~ ~ ~) , , I I I I I I I I I I I I I I ! I l l

, I S ~ ~ ~ A ~ M A T , / ~ , , ~ K , , ~ , , ~ q I I I I I I , I , I I , I I~~~ I \ /

, s T , / , s ~ E c , R , , ~ P ~ , 11

assigns the name AMAT to the list of variables A, K, X, and Y. The
name SEC is assigned to the list of variables R and P.

A list of variables to be used for input or output may be given a name
by use of the NAMELIST statement. True or false? Answer: True

Assuming that the variables Z and Z Z have been dimensioned, write
a NAMELIST statement which will associate these variables with the
name Z LIST. Answer:

--
NAME u s ~ / ~ u s ~ / ~ , z z

The NAMELIST statement must conform to the following rules.

a.) The NAMELTST name must conform to the same
rules as variable names.

b.) The NAMELIST name is enclosed by slashes and
followed by a list of variable names separated by commas. This
sequence may then be repeated with other NAMELIST names and
lists if desired.

c.) The NAMELIST statement must appear prior to its
use in an I/O statement.

d.) The NAMELIST name may appear only in I/O statements.

e.) A dimensioned declaration of an array used in a
NAMELIST must precede the NAMELIST statement.

A NAMELET name may appear in a mathematical computation.
True or false ? .

Now that you know how to write NAMELIST statements, the next
step is to learn how they can be used. The form of the FtEAD or
WRITE stateinent using NANPEIJST is

READ (i, NAME) or
WRlTE (i, NAME)

where i is the 1/0 unit and NAME is a NAME LIST name. The
NAMELIST statement must the use of the NAMELIST
name in an 1/0 statement.

Answer: False

Answer: precede

VI.N.4 To illustrate the use of the NAMELIST, consider the statements

FORTRAN CODmTG FORM
1 1
I

FORTRAN STATEMENT I J
F j g / 1 1 1 3 _ _ 1 1 a I

These statements can be used to read values into as many of the
locations in Z and ZZ a s desired. This is determined by the form
of the information which is actually read. This information must
s t a r t with the character $ in column 2, immediately followed by the
NAME UST name, followed by a blank. This in turn is followed by the
data and ended by $END. Each data item is composed of an a r r a y name,
a r r a y item, o r simple variable along with the values to be read for those
variables. To show the exact form, suppose that values of Z(2), Z(5), K
and all values of ZZ a r e to be input from cards. The cards might have the
following form :

Card 1 b$Z LISTbZ(2)=25.6, Z(5)=6.2, K=3,

Card 2 bZZ=l.O, 3.4, 2*2.5, $END

The following rules apply to NAMELTST data cards .

1 .) Column 1 must always be left blank.
2 .) No space is left between the character $ and the NAMELIST name.
3 .) A comma must follow each constant data value. This means that the

constant data values must be separated from each other and from a following
variable name.

VI.N.4 .
(Cont .)

4 .) A blank must follow the NAME LJST name .
5.) If more than one card is required for data, each card

except the last must end with a constant followed by a comma.
6.) Columns 2-80 may be used.
7 .) The asterisk is used a s a repeat symbol as was the case

in the DATA statement.
8 .) The variable names in the input do not have to appear in

the same order a s they appeared in the NAMELIST statement.
9 .) In a NAMELIST record, the mode of the variable name

supercedes the mode of the value.
10.) A $ or $END (either form is correct) ends a NAMELLST

record.
11 .) No information other than data may appear on a NAMELIST

data card. (i . e . , Serial numbers, identification, etc .)

Write a data card which will assign 36.0 to Z Z(3) when read by the
three statements above.

VI.N.5 The use of the NAMELIST statement for output will output all values
in the list in a format such that i t may be read a t a later time using
the same NAMELIST.

The statement WRITE(i, ZUST) will write all variables named in
ZLIST in a format which can be read by the statement READ(i, ZUST).
True o r false ?

Answer :
b$ZLISTbZZ(3)=36.0, $END

Answer: True

VI.N.6 The variable types which may be included in a NAMELET statement
are integer, real, complex, double precision, and logical. The
appropriate type declaration must precede its use in a NAMELIST
statement. The constants input through the use of the NAMELIST
must agree in type with the associated variable.

For example,

- C f o r Comment
FORTRAN CODING FORM

FORTRAN STATEMENT

I

defines the complex variables C and D as NAMELIST variables.

When used with the previous statements, the following data card will
set X = 25.4 and the complex variable D to (3.2 + 12.1i).

VI.N.7 Work exercise V1.N in your workbook at this time.

Program Files

In Chapter IV we learned how to present data to the computer on
punched cards or magnetic tape, and how to receive data from the
computer on the printer, punched cards or magnetic tape. This
transfer of data occurred during the execution of a program,
according to 1/0 control statements and FORMAT statements
written by the programmer. Now perhaps you wonder how the
program itself gets into the computer--certainly a vital piece of
knowledge, if the program is ever to be executed!

Let us first consider the make-up of a typical FORTRAN program.
The basic building block is one line of coding which, since it will be
punched onto a single card, may be thought of as a card image. This
card image may be any acceptable FORTRAN statement, continued
statement, END card, or comment.

A card image is a single - -

Several lines of coding, or card images, grouped together (and following
applicable FORTRAN rules!) make up a single main program or a
single subprogram. As you have learned previously, the end of a single
program is signified by an END card.

Is END an executable FORTRAN statement?

Answer: line of coding

Answer: No

For various reasons, i t is desirable to separate some often-used
coding into subprograms, and one main program may call upon
many subprograms during the course of execution. A main program
together with all its required subprograms may be thought of as a
file of executable programs. -
A program is made up of several

Several high powered programs govern the course of action which
the computer will follow. These routines are called executive
routines o r svstem routines, and are used for reading in other
programs--your programs--cornpiling these programs into
executable code and executing these programs.

Executive, o r systems, routines are computer

The computer hardware itself is constructed so a s to be able to read
the necessary systems routines from magnetic tape, disc o r other
I/O device, and then give control of execution to these routines. This
process is sometimes called boots trap.

Boots trap refers to the process of getting programs into
the computer.

Answer: card images

Answer : programs

Answer : executive

VI.0.6 Jus t a s your program will probably read in data, certain executive
routines will also read in data; but, their "datatf is your program itself.
And just a s your program operates upon its data in specified ways,
the executive routines operate upon your program in specified ways;
their operations consist of compiling (translating into executable code),
e r r o r detection, loading into core, listing, punching e tc .
Some systems routines use a s data.

VI.O.7 Systems routines a r e capable of doing many things with your program,
but you may specify just which systems operations you want performed
on your program. You do this by means of control cards.

A special kind of data card for the executive routines, telling what
system operations a r e desired, is the

VI.0.8 Various control cards relay different types of information to the systems
routines. For example, one card is for accounting purposes : i t tells job
number, pricrity, etc. Another card tells that the FORTRAN compiler
will be needed. Another card may specify which input o r output files will
be used.

Answer: programs

Answer: control card

Executive routines can read many types of control cards. True o r false ?
Answer: True

VI.0.9 Every FORTRAN main program to be compiled requires a program card
which specifies the name of the program and the 1/0 files i t will need to
use.

The program card specifies the and the Answer : program name,
1/0 files

System Files

We have previously discussed data files and program files. A
system file, like the other type files, will denote a particular set
of information which is related in some manner. The requirement
for information to belong to a particular system file is that the
information be input or output on a particular I/O file.

To illustrate system files, consider a small program which reads
some information from cards, performs calculations, and prints
the results. Such a program makes use of two system files. First,
the set of all information to be read by the card reader constitutes
a system input file and second, the se t of all information output to
the printer makes up a system output file.

The set of all information transmii7ted to or from a particular I/O
file is called a

The two system files for the card reader and printer a re used in
almost all programs. Because of this frequent use, they have been
assigned file names of INPUT and OUTPUT respectively.

The system file name for the card reader is

Answer: system file

Answer : INPVT

The program card which immediately precedes your main program
must have the form

PROGRAM name (file names)

where "name1' is the name by which you want to refer to your
program and "file names" specify the systems file names a
program requires .
The initial P of PROGRAM should be punched in column 7 of the card.

Program card

PROGRAM MAIN (INPUT, OUTPUT)

will name the following program , and will call for how
many I/o files ?

When INPUT and OUTPUT are used to specify I/O files on a program
card, they refer to the standard units for card reader and printer,
respectively. The system will recognize these references without
any further information.

The standard files for card reader and printer a re called
and

Answer: MAIN, two

Answer: INPUT, OUTPUT

E
.d

0
:

W
-i

k
,
&

&

O
c
d

U

O
Y

+
E

cd

3g
-o

.
Q

&
m

&
. g

a

.Ej
0
 a

s4
k

c
s

6

8 :, .P
A

0
s
 L

$
z

w
i

C
,

C
,

C
 a

#
 c

u
-x

c
,

,z
O

P
;

 C
 a
&

X
w

O
 O

f-,
.!2?

z
3

s
:s

E

"
2

 3 5-z;
.

*
a

F
*

.
g

Y

m
P

w

i-r
0
)
*

Q

m

k
 .fi

g

5

a

*
 2

.3

0
 6

a
.2

 &
-%

S
d

Z
::
c
o
a

*.
f
f
 Z

G
K
O

0

0

6

@
 &

g
 M

E

O
D

 1
T

.E

$
&

 *
m

G

g
g

g
c

m
e

q
g

;
5

$
j

'5

c
,

4

"

.Erf
zg sp

 F
o

=

s;g

s
g

All references to unit 9 in the FORTRAN program will use the system
I/O file TAPES. References to unit 7 will use system I/O file TAPE7,
etc. If an integer variable is assigned a unit number and then used in
the I/o reference, that variable name would be used to designate the
appropriate system I/O file.

As an example, consider the system I/O file TAPE9 which i s shown
in the PROGRAM ca rd below. The variable IX must be assigned
a unit number prior to its use in an I/O statement. The unit number
assignment may be through input, DATA statement or calculation. The
following code will illustrate this procedure.

- C for Comment ,
'!State- -2
1ment~o.c; FORTRAN STATEMENT I
~L---.,5U17 --- -4 -

I
1 1 1 1 1 1 1 1 1

I

I l l L: ~ 1 ~ 1 ~ 1 ~ 1 ~ ~ 1 ~ ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 1 I I I I ! ! 1 I I I I ! I I 1 1 I I
I

VI. P. 6
(Gont.)

Indicate the name of the third system I/O file if the previous coding
is modified by removing the statement IX = 9 and rewriting the READ
statement as

READ (9) (Y(P), I = 1,100)

Answer: TAPES

When tapes other than the standard input and output units are used,
they must have further identification, in addition to being listed on
the PROGRAM card. See yo&:.instructor for the formats of all
control cards.

Work exercise VI .P in your workbook at this time.

PROGRAMMING TECHNIQUES

With the use of the FORTRAN tools now mastered, it is possible to
write computer programs of many degrees of complexity. At this point,
it is desirable to give some thought to the overall planning and execution
of problem solving on computers. Generally, to solve a problem, the
programmer must do four things:

Identify (clearly express) the problem

Outline the steps (logic) for its solution

Write the computer instructions (code)

Check-out or correct (debug) the program

W . A . 1 The four steps in problem-solving may be summed up a s 9

outline
-7 , and checkout.

Once the problem is identified, the second step is to outline the steps
required to produce a solution. This outline is often in the form of a
graphical representation called a flow chart. A flow chart pictures
the sequence in which arithmetic and logical operations should occur,
and shows the relationship of one part of a program to other parts.
It may look something like this:

Answer: identify
code

SUM + Y

STOP,

Although there is no real standardization in the drawing of flow charts, the following

shapes may be accepted as generally recognizable: A rectangle represents a function,

a diamond represents a decision, a small circle indicates a connector, an elongated

hexagon indicates a predefined process or subroutine, a large circle indicates

termination.

Function a Connector Subroutine 0 0 (-)

Various input/output media have these distinctive representations:

VII. A. 1 Use of these various shapes greatly facilitates the reading of a flow chart, and
(C ont.) comprehension of the overall plan of execution, from input, through calculations,

to output.

Flow charts may be drawn in varying degrees of detail. For overall planning, a

flow chart should be quite general, indicating only major functions of various

sections of the program. Each major section may have i t s own flow chart,

containing more detail, which may serve a s a guide to coding.

VII. A. 2. Would you consider the following flow charts to be general o r detailed:

x = a sin CzI
Return 0

Answer:

(a) Detailed

(b) General

W. A. 2
(C ont .)

A good flow chart will provide the following services:

(1) It will serve as a means of experimenting with various approaches to
solving the problem.

(2) It will provide a sound basis for coding.

(3) It will be a useful piece of documentation, enabling others to understand
readily the purpose and plan of the program.

General guidelines to drawing flowcharts include:

(1) In drawing a flow chart, it is desirable to work from left to right and top
to bottom of the page.

(2) Direction of flow of execution is indicated by lines with arrowheads
connecting the various boxes.

(3) Connectors a r e used to indicate connections between remote parts of the
flow chart, so as to avoid a clutter of crossing lines.

(4) Multiple entries to a box should combine into one line before actual entry.

(5) Whenever possible, a flow chart should relate to a source-language listing
by using statement numbers or page numbers for cross referencing.

(6) Programmer's name and date should be included.

(7) Every major section of the program and every major decision should be
represented on the flow chart.

rn I

-351-

VII. A. 4
(C ont .)

A DO loop may be represented in a flow chart in this manner:

+
Draw a flow chart for the FORTRAN statement:

10 CONTINUE

Answer:

W . A . 5
(Cont.)

Four objectives of computer programming are accuracy, speed,
simplicity and economy of storage. In order to achieve these
objectives, several aids a r e available .to today's programmers.
In the course of trying to obtain the greatest possible accuracy,
an entire field of study, called numerical analysis, has developed.
This branch of mathemetics has studied techniques for handling
common mathematical problems on digital computers, considering
such problems as error due to round-off or truncation, large (or
small) numbers, etc. From these studies have .come generalized
techiques , or algorithms, for coping with such problems a s eval-
uating various types of functions, handling matrices, and solving
various systems of equations, A good many of these techniques a re
available from computer manufacturers or large computer users in
the form of generalized subroutines. Also, many books are available,
giving detailed descriptions of various techniques, on which programs
may be based.

Numerical analysis is concerned with finding methods of solving
mathematical problems on digital computers with great accuracy.
True or false?

In other computer problems accuracy is not at stake, but a selection
from various alternative logical techniques will determine the speed
with which the problem is solved. A classical example is the problem
of sorting a group of items into some specified order. Again, various
techniques have been worked out and are available to the provammer.
(See Chapin, Ned, An Introduction to Automatic Computers, Chapter 14,
for a discussion of sorting techniques.)

Answer: True

Accuracy is always the prime concern of the programmer.
True or false ?

While some programmers may take a certain pride in producing a
very sophisticated program, based upon complex and tricky logic,
it must be admitted that simplicity is a most desirable feature.
Often a programmer must assume responsibility for a program
written by another. Excessive complexity and clever tricks here
are an obstacle to understanding the program. Frequently a pro-
grammer is required to modify or up-date a program he had
written some time previously. His own earlier trickiness may now
be a hindrance to himself as he tries to refresh his memory.
Simplicity pays I

After a program has been written, it must be checked out or "debuggedll
to find and correct errors in the program.

lfDebugW means to correct or "get the bugs outu of a program. True or
false ?

Several types of errors may exist at first--key-punch errors, coding
errors, logical errors. Key-punch and coding errors may often be
found by a careful perusal of the coding sheets and of the machine list-
ing of the program. Common mistakes to look for are I instead of 1,
0 instead of 0 , Z instead of 2, S instead of 5, misspelled variable
names, punctuation errors.

Answer: False

Answer: True

VD. D. 2 For any arithmetic ca!culations, it is nc-cessary to have a hand-check-- a
(Cont.) hand-calculated answer :or a check case. The check case shculd be such

as ta point up e r r o r s , if any, in input velues as -nrell zs erroneous seqlrence
of operations. Critical values, as we:l as normal values, should be testecL
If the pro1.1lern originated isith someono other than the programmer, as is
most oRen the case , i t is desirable for t he originztor of the problem to pro-
vide realistic check-case values for the hand-check, if not the entire check-
case solution.

Hand caIculations a r e often tedious and sfiould be performed by the or ighator
of the problem, rather than by the programmer. True o r false ? Answer: False

Another desirable debug technique is LQ catch mistakes before they go on
the machine. A careful study of the codkg will often turn up mist&es of
vai-ious types; and often, too, mother. progan:rner will s e e problems to
wliich ate original p r u p a m m e r may Ft: "blirld", Care 2nd t ime should he
taken to find as mmy hugs a s p o s ~ i 5 l ? sehre going onto the compubr.

Items to look for while stud-ving the c~x??irlg are:

1.) Loop parameters -- will the computer execute the loop the
desired number of times '?

2., Calling sequences -- m e they of proyer length and variables
' -f p r q e r mode 7

3.) Common storage -- is the proper value available at the desired
t ime ?

VIT. D. 5 A programmer who is unfamiliar with a Grogram will be less likely
to find logical e r r o r s in the progran: than wi l l the author of the
program. True or falee?

The most sim pie debugging technique is self-programmed. Be
generous with the prlnt-out of intermediate information. Some of
this infornlation could he identificaticn of a particular program
branch reached, intermediate data to help verify a hand computed
check case o r a count of a particular lumber of iterations required.
A s the program i s checked, the print statements no longer needed
may be removed. On the other hand, if the programmer sees a
need for more Ltermediate information, other print statements may
he added.

To ass is t in debugging, most computers and installations have available
various debugging aids. These include memory dump-- a printout of
a l l o r part of memory a t any one givelz time; and tracing programs --
a printout of certain computer regis ters at each step of execution o r a t
certain requested points during execu!Con. Memory dxmps a r e time-
consumi?g, particularly if the computer is to continue execution of the
progrzm followbg tl:e dump. Tracing rou:ines a r e even slower, but
a r e cf value as a last-resort debug k c h n i q ~ e .

Before a progatr imer is thrcugb with ,3 p r o s = he should provide
adecp~s;te dozumentation of the program. This documentation is valuable
for his O-wn records, for his employer, and for other programmers who .
may have ocqasioiz ta use his progrzm. Documentation should include a
clear statement 3: the problem, a silmmsry of my mathematical analysis
involved iii s~-.l-s'~g the problem, a flow char t indicating every basic decision
point in the prcgran, and a listing of Tile checked-out program, complete
with c o m ~ e n t s a d cross-referexicing to the flow chart.

Answer: True

